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PREFACE

There are many books on the well-known topic of differential equations. Some of
these books focus on theoretical aspects whereas other give techniques of solving the
problems. There has been a need to have both thei r theoretical development and problem
solving skills. Taking this need into consideration, we have written this book. '

The main aim of this book is to present the elements of differential equations in a form
suitable for the use of undergraduate students of mathematics, with emphasis on developing
problem solving skills but nevertheless supported by adequate theory without going into the
intricacies of some involved proofs, book included chapters laplace and fourier transforms has
the advantages of directly giving the solution of differential equations. In its present form, the
book has been developed from a course offered by the authors to the B.Sc. students of S.R.T.
Marathwada.University Nanded and other Universites in maharastra.

Chapter - 1, Introduces the some basic concept of partial differential equations, Methods
of forming partial differential equations, and Solution of equations by direct integration, Lagarangean
linear equation are discussed with illustrative examples.

Chapter - 2, Inthis chapter partial differential equations Non-linear in p & q are discussed
and various methods of solving partial differential equation are also seen with examples.

Chapter - 3, In thischapter We discussed pratical problems of wave equation, one
dimensional heat flow, two dimensional heat flow, radio equation.

chapter-4&5, Both chapters we discussed integral transforms like Laplace and fourier

transforms and their properties.,inverse transforms, transforms of special fimctionsand convolution
theorem.

Dr. S. B. Chavhan

Dr. R. N. Ingle
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1.1

1.2

1
PARTIAL DIFFERENTIAL EQUATIONS

INTRODUCTION :-

Partial differentail equations arise in geometry, physics and applied mathematics when
the number of independent variables in the problem under consideration is two or more.
Under such a situation, any dependent varaible will be a function of more than one
variable and hence it possesses not ordinary derivatives with respect to a single variable
but partial derivatives with respect to several independent variables.

PARTIAL DIFFERENTIAL EQUATION (P.D.E) :-

Definition:- An equation containing one or more partial derivatives of an unknown
frunction of two or more independent variables is known as a partial differential equation.

For example of partial differential we list the following.

0z Oz _
-a;+5_ z+,\y ........ (1)
BEmC
7o B Rl (7 — (2)
z(%)+2=x 3
=ty 3)
Ou Ou ou
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e +_v2 +(z—c 2 P
1.3 ORDER OFA PARTIALDIFFERENTIAL EQUATION :- )

Definition:- The ordre of a partial differential equation is defined a the order of the Solution:- x* + y* +(z-c)’ =a*

(1)
highest partial derivatives occuring in the partial differential equation. _ _
do Contains two arbitrary constants a and c.
InArt 1.2 equation (1), (3), (4) and (6) are of the first ordre, (5) is of the second or ' _ )
and (2) is of the third order. Differentating (1) partially, w.r.t. x we get
14 DEGREE OFAPARTIAL DIFFERENTIAL EQUATION :- 254 2(5= B =0
The degree of a partial differential equation is the degree of the highest order def'iVati"es O
which occurs in it after the equation has be rationalised, i.e., made free from radicals ¥ x+(z-¢c)p=0 2
fractions so far as derivatives are concerned. P -(2)
In 1.2, equations (1), (2), (3) and (4) are of first degree while equations (5) and (6) 2 PifErentaiing (1) pavilly vty we gt
of second degree.
\ L5 S :- 2y+2(-¢)22=0
X LINEARAND NON-LINEAR PARTIAL DIFFERENTIAL EQUATION ’ oy
| » . :
Deﬁpltloq:- A partial differential equation is said to be linear if the dependent varlab.f el =0 ’
. apd is pa.rt1al derivatives occur only in the first degree and are not multiplied. Apalft;n -(3)
differential equation which is not linear is called as a non-linar partial differential equat Let us eliminate C from (2) and (3)
I]?nAn’ 1.2 equations (1) and (4) are linear while equations (2), (3),(5) and (6) 3¢ non- r
e From (2) (z—¢)=-=
1.6 NOTATIONS :- i
When we consider the case oftwo . hem tO be : 3
5 endyand SeE o batl do Mdependen§ variables we usually assuﬂ_let tations Putting this value of z - ¢ in(3), weget ¥ ——¢=0
hr ¢ the dependent variable. We adopt the following 1 &
ougout the study of partial differential equations
=0z/ x | > L
¥ ’ 9=0/y, r=o"z/oxt, s=0z/0xdy andf:azzjay: ];7 le2 5
1.7 METHOD OFF . AL 2 (x—h) o+ (p=k) v5 =u®
ORMING PARTIAL DIFFERENTIAL EQUATIONS * Sol
- ; o olution : We hav.
A partial differential equation is fored by two methods e
(1) By eliminating arbitary contantg (x—h)’ +(y=k) +22 =& (1)
(i)  Byeliminating arbitary functions Differentiating equation (1) partially w.r.t xand y , we get
()] By eliminating arbitary contapts

x=h+zp=0 and y—k+2g=0
4 Example 1. Form a partial differential equation from




|
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s

y=(z-c)qtan’a

Putting the values of x—» and y—k from the last two equations in the given € ‘

(1), weget 22(p* +4" +1)=2’
Which is the required PD.E.
E"*‘E‘P‘e{‘ z=(x+a)(y+b)
Solution : We have
z=(x+a)(y+b)

Differentiating equation (1) partially w.r.t x and y we get

%=p=(y+b)

0z
aﬂd Ex- =q (x + a)
Putting the values, of (y+5) and (
get
2= pqg, which is the required PD.E
\Qxample 4: 2422 (z-c) tan?q
Solution : Differentiy) partiallywrt 5 g Y ,we get
L. s We ge
2x=2 (z - c) 2 22
ptan® g 22
“E @

2y o dz
y 2(2 —c)\q tan o
5 (i)
From (i) & (i) efirr:
H& (ii) elimingte Contract
2x
ptanq ~2(z=c)

(2-c)e—
=—
ptanza putin

x+a) from (2) and (3), we get in the equatic”

quation

g.tan’

yp=xq
yp-xp=0
(iii) Method of elimination of arbitary function

A1) Examp!g,s? z=f(x* +y?)
Solution : We have
2 2=/(x+7)
| Diff. (1) partially w.r.t x and y, we get
NE) | p= (5 +51)2x
%

g=r'(x+y*)2y
From (2) and (3), we get
py—qx =0, which is the required P.D.E.
/Example 6 : f(x+y+z, x* +y? +22)=0
Solution : We have,
f(x+y+z, 2+ +2)=0
Let,u=x+y+z and v=x*+y* +2°
Then the given equation is
f(uv)=0
Diff. (2) partially w.r.t x , we get

+ =
ov

SERE RN

aw\ox P

(1)

«(2)
«(3)

«(1)

-2
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of of
L/ e} Y (2x+2zp)=0
) +p)+—-~(2x+22p)

diff. (2) Partially w.r.t y, we get

o 0,

du\dy "~ dx) ov\dy o
LA g p
Fw (1+q)+ av(:2y+2.f.q)

.o of
Eliminating o and ™ between (3)and (4), we get

1+p x+2zp
l+q y+zq

or  (y-z)p+(z-x)g=x-y
Example 7 : From the partial differentia] €quation from
Z=f (.1:1 - yz)
Solution : z=f(x* - )
Differentiating (1) w.rt. x and y

-._az 1
pié;:f (x2 “y2)2x

=02 _ i o
q“ay“f(x —yz)(-zy)

—_—

Dividing (2) by (3 ) We get P _~x
q9 vy or

PY=rg%
or

YP+xq=(

el )

..(4)

(1)

..(2)

3
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Exampleg./(x—h)l +(y—k) +2* =a’

Solution : We have

(x—l':)z-k(y—ﬁ'c)z+.22=ar2 (1)
Differentiating equation (1) partially w.r.t xand y , we get
x—=h+zp=0

and y—k+zg=0

Putting the values of x5 and y-k from the last two equations in the given equation
(1), we get

::z(p2 -i-q'z-i-l)za2
Which is the required P.D.E.
=
Example9: z=(x+a)(y+b)

Solution : We have
z=(x+a)(y+b) ~(1)
Differentiating equation (1) partially w.r.t x and y we get

Oz

a—x=p:(y+b) A2)
and  Z=g(x+a) (3

Putting the values, of (y+5) and (x+a) from(2) and (3), we get in the equation (1), we
get

z = pg, which isthe required PD.E.
Example 10 : z= f(x* +)?)

Solution : We have
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T %)
wee F (x2 + yZ) (D Eliminating % and a—fv between (3) and (4), we get
Diff. (1) partially w.r.t x and y, we get 1+p x+zp
T+qg y+zq
p=/(x"+y?)2x A2 e
or (y—z)p+(z-x)g=x-y
g9=1"(x*+y")2y .(3)
EXERCISE 1.1 :

From (2) and (3), we get

From the differential equation
Py=qx=0, which s the required P.D.E.

3 z=(x+a)(y+b) ) (x=h) +(y-k) +2* =a*
Example 11: f(x+y+z, 5 437+ 22)=
2 ) 9 b

Solution : We have, () 2z=(ax+y) +b @) ax’+by’+z =1

f(x+y+z,x2+y2+zz)=0 (1 & . F+r=(z-c)tn’a #) z=f(x+))

Y
Let = 2 2
Then the given equation is
ANSWER 1.1:

S (uv)=0 (2 e :
Dlﬁ:(z)pal‘tiauyw_r_tx’Weget (1) pq=1 @) z (p +q* +1)=e
o [au AN 3) = p? =2
~l=+p% )\, ¥ (ov Px+qq=g 4) z(px+qy)=2z"-1
ou 6x+Paz)+'_"(—'—+ gi)_

ovlox Pas|=0
- G)  wp-x¢=0 6) yp-xg=0
L(14p)+ L
6“( +p)+ av(zx+22p)=0 (3) 7N 2z=xp+qx
diff. (2) Partially vz e 1.8 SOLUTION OF EQUATION BY DIRECT INTEGRATION :
_a_f_ @._ Ou af 63
au[ay +q5§]+a(%+q%§]=g Example 12 : Solve __angy =cos(2x +3y)
o of 3
uct 8 L
au( +q)+av(2y+22q) B @) Solution : Yz_;V:C05(2x+3J’)
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4__—-_'_-__‘

Integrating w.r.t. 'x' W€ get

Fz__1n(2x+3p)+£(7)
oxdy 2

Intergrating w.r.t x, we get

_@Z_zlcos(zx+3y)+xlf(}’)dy+g(y)
oy 4

o ——zcos(Zx +3y)+ 'xq’)(y) +g(»)

X
Integrating w.r.t. 'y" , we get

\ z=—%sin(2x+3y)-_f'ﬁj¢(y)dy+jg(y)dy

zz_lzsm(zx+3y)+x¢l (¥)+6,(»)

0* .

z
Example 13 : Solve axdy ALY
Subject to the condition z(x,0)=x* and 2 (Ly)=cosy
0(0z)
Solution : 7 a—y =x¥

On integraing w.r.t X, we obtain

oz x°

ay“;)f’*f()’)

Integrating w.r.t y, we obtain

x?x 2
2=+ [ () v+ g ()

v
v
2
1%

[r-§1 0]
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RLET 0
Condition 1 : Putting » = »? and y=0 in(1), we get
X =0+F(0)+g(x)
Putting the value of g(x) in(1), we get

x="3:2 +F(y)+x* —F(0) )

Conditon2: z(l,y)=cosy

Putting x =1 and z=cosy in(2), we get
y? /
cosy=—6-+F(y)+l—F(O)

Putting the value of F(y) in(2), we obtain

1
z=-6—x3y2+cc)sy—%yz—-1+x2 Ans.

9z a_z

=z,ify=0,z=¢€" and —=¢e™"
oy - it dy

Example 14 : Solve

Solution : Ifz is a function of y alone, then
z = Asinh y + Bcosh y wher eA and B

and constants, since z is a function of x and y, A and B are the function of x.
Then z=sinhy.f(x)+cosh y.¢(x) il

Onputting y =0 and ; — .~ in (1), we get
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& =4(x) g—;=.e’sinx+f(y)
(1) becomes z=sinh y.f(x)+cosh y.¢* (2 Integrating w.r.t y we get
On differentiting (2) w.r.ty, we get z=sinxe’ + f(y)+¢(x)
52 EXERCISE 1.2 :
— =cosh y. . .
oy Y f(x)+sinh y.e E) Solve the following.
0z 0z _y
i = —=e " ==4+2
Onpuiting y=0-énd oy ¢ m(3),we obtain 1 oxdy «x
e’ =f(x Bz 0z ; dz
- ( ) () g:azz, Whenxzo,azasmy and 5=0
£ beeomes, Z=e"sinhy + ¢* ¢ogh y Ans
d ; =sinxsin y 'fE=—2sinyand z=0 wh
Example 15: Solve = @ Bxa if 5 when x=0
Oxdy
i e 2 4) The partial differential equation Y il +2x Y +y 6“;: =0 iselliptic if
Solution : oty Xy p q P foc By P p
On integrting w.r.t x we get @) x*=3* () x2<y? (©) x2+y2>1(d) ¥+ =1
& X, ANSWER 1.2 :
y 27 )
2
Y
Integrating w.r.t. y we get (1) z=—2—logx+2xy+f(y)+¢(x)
i ) z=sinx+e’ cosx

2=t 1 (3)+ ()

x23

o ) +a(x)

Z=

2

d
Example 16 : Solve axazy -

Solution:  Integrating w.rtx we ge

¥

LAGRANGE’S LINEAR EQUATION IS AN EQUATION OF THE TYPE

0z
Pp+0q =R, where, P,Q,R are the function of x, 7,z and £=—=-;
v

q—%
oy

Solution:- Pp+ Qg =R sl 1)

This form ofthe equation is obtained by eliminating an arbitary function f from



PARTIAL DIFFERENTIAL EQUATIONS / 22

i PARTIAL DIFFERENTIAL EQUATIONS / 23

f(u,v)=0
where u,v are function x, y,z

Differenting (2) partially w.r.t to xand y

ﬂa_u_‘_a_uaz af av avaz
Oou\0x 0z 0dx) Ov Bx azax

and aa_f[a_u+a_uaz of(ov ovoz “o
u\dy 0z0y) ov\ay 9zdy

Let us climinate <= and 2L
use te 3, and 3= from(3) and (4)

0 \
From(3) af(gu+au ~-_9f ov av
u\0x 0z° ) ay|\ax " az7
0 \
From (4) a{; (Z';Jr‘;“ -_‘Lf(av o )
z J ov

dy oz
Dividing (5) by (6), we get

Ou a“ ov 9
v
ax azp §+“_

\ﬁ
% ('Lu v oy

oy 8z 5"'5-‘]
ou ou ov F)
—+—p||—+L¥ 0
or I:ax 0z p]l:ay+az :|=|i%+a\u-q1“:ﬁ+-a~v_p]
¥4
P XSo 4t — xpxﬁ Ou 9y
x 6y ox 0z oz ay+a“zxa“-l7q
V4
Ou a
u V+au au

z 0z

.(2)

..(6) |

_a_uﬂ_a_uav ou xav 6u6v
ox 6z az

dy 0x Oy 6zp 6zq
ou 6v _6_& ov + _a_u a_v___a_g ov q
or 6y az 0z 0Oy P oz 0x ox 0z

..(3) | _Ou " Ov _ou_ Ov

ox dy 0y Ox

()

If (1) and (7) are the same, then the coefficient p,q are equal

.4

ou Ov Ou Ov

p=2 2 2

0y 0z 0z 0y

ou oOv Ou Ov
0=Tox x>
0z Ox Ox 0Oz

..(5)

au ov 6u ov

T ox 8y 6y Ox

Differentiating u =¢, and v=c,

a—udx+a—ud +—a-£dz 0
O0x oy 0z

ov ov ov
—dx+—dy+—dz=0
and Ox oy oz

5 Solving (9) and (10), we get

dx dy

..(8)

Now suppose u =c, and v=c, are two solutions, where a,b are contains.

(9

..(10)

dz

6_1{@5,, v 6u6v6u6v auav

dy 0z dz dy 9z 8x 0x 0z ox oy 0y 0ox

(11)
From (8) and (11)
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& _dy_dz
P O R
Solution of these equations are

u=c, and v=c,

o f(1,v) =0 isthe required solution of (1)
#WORKING RULE ;

First step : Write down the auxillary €quations

@ _dy_d
P 0 R

Second step. Solve the above auxillary equa;
uations

Let the two solutions be 5, — ¢, and
1 V= Cz

I I.IdS ep- f 3
( ) (v) ‘ - .

Yq=xp=z
Where F'='§—‘3 q= s
Solution ; Yg—xp=z " é;
Here the auxillary €quation gre
Ex_ _d 4z
~x §
—logx =1,
gy -logq
o (From fipg two equations)

10gy=logz+10gb

(1)

F
(From Jag two equations)

PARTIAL DIFFERENTIAL EQUATIONS / 25

Y_p
Z

From (1) and (2)

.. Y
Hence the solution is ./ (xy, j) =0 Ans.

R
tampleJéSolve y'p-xyg=x(z-2y)
Mlution : y’ p—xyg=x(z-2y)
The auxillary equations are

dx dy _ dZ

2

¥ - x(z-2y)

Considering first two members of the equations

& _ &
T, or xdx=-ydy
) 2
. X y Cl
Int Sy Ty
negratmg 9 2 2
or x2+y2=C1

From last two equations of (1)

& _ &
y z-=2y
or —zdy+2ydy=ydz or 2ydy=ydz+zdy
¥ =yz+C,
2
Yy =yz+C,

From (2) and (3)

-(2)

sll)

-2

+43)
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2 +y* = f(y* - yz)

Ans
Example 19 : Solve (x* —yz) p+(y* —2x)g=2" —xy
Solution : (x2 —yz)p+(y2 —zx)q =2 —xy
The auxillary equations are
x __dy _ &
xz_yz yl_Zx—Zz—xy
dx—dy dy - dz dodi

2 e D - e e A—
YoyEoyam ylomozay 2 = xy—x* + yz

dx—dy _ dy—dz

(x-y)(x+y+z) m}:-z_): e

(x+y+2)(z-x)
Body _dy-d: _dz-dx
xX=y y—z s

Z—X

Integrating first two members of (2), we have

log(x")f’)zlog(y_z)+10gc!

x—-y
y—z

log

=logC,

The required solution is

x—- -
f|: ysy z:lzo
yY—z z—x

T ———

___——'-—'
METHOD OF MULTIPLIERS :-
Let the auxillary equations be
dx_dy _dz
P O R
I,m,n may be contains or functions of x, y,z then we have
4,

dx _dy _dz _ldx+mdy+ndz
P QO R IP+mQ+nR

I,m,n are chosen in such a way that

IP+mQ+nR=0

Thus ldx + mdy + ndz =0

Solve the differentjal equation, if the solutionis u = ¢,
Similarly , choose another set of multipliers (/,,m,,n, ) and if the second solutionis v =c, .

. Required solution f(u,v)=0

oz oz
Example 20 : Solve (W—ny)aﬂnx—lz)a—y:ly—mx :

Ox 0z
% . _ .y =lv—mx
Solution : (’"2 "J’)—ax +(nx y)_ay y —mx

Here, the auxillary equation are

dc  dy _ dz
mz—ny nx—lz ly—mx

Using multipliers x,y,z we get

each fraction
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B xdx + ydy + zdz _ xdx + ydy + zdz
_x(mz—ny)+y(nx—lz)+z(ly-—nx) 0
xdx+ ydy + zdz = ()
which on integration gives
x2+yz+23=r:1 (1)

Againusing multipliers, /,m, n , we get
each fraction

ldx + mdy + ndz
l(mz— ny) + m(nz ——lz)+ n(ly—— mx)

_ldx+mdy+ndz
-‘-—‘_._‘_‘_t—._
0

ldx + mdy + ndz =

which, on integration givs

..(2)
Hence from (1) and (2) | the required solution jg
2 2
x4y +z2=f(lx+my+nz) Atig
i |
xample 21 : Fj ;
ple Find the genreal solution of x(z2 ‘J’2)-é\—z—+y(x2 zz) 0z z(yz _
Ox )53,
dy
Solution : x(zz _yz)QZ_+y(x2 _Zz)az
Ox aﬁz(yl—xl) (1)
The auxillary simulatneqyg qutaions gy,
e
dx
T 5=— Y
X(Z =y ) 2 = dZ
Mxvq‘q;:3 @)
Using multipliers x, y, 7 v, get
Each term of (2) is equa] 1,

xdx + ydy + zdz _ xdx+ ydy + zdz
x2(22-—y2)+y2(x2—zz)+zz(y2—x2) 0
xdx+ ydy+zdz=0
Onintegration x*+y*+2° =C, ..(3)
Again (2) can be written as
a b g de dy dz
B e (4
-yt X -7 ¥ —x (z —-y“)+(x2—zz)+(y —rz)
dr dy d:
_x y =z
0
or logx +logy+logz=1logC,
or log xyz =logC, or xyz=C, (D)

From (3) and (5), the general solution is
xyzzf(x2+y2+zz) Ans.

ixample 22 : Solve the partial differential equation

y—z Z2—X x—=y
p: q:
z zx xy

yolution :

Multiplying by xyz , we get

x(y=z)p+y(z-x)g=2(x-y)

A
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dx dy  dz _ dx+dy+dz d_y:E
= = = Z
x(y-2) y(z-x) z(x-y) x(y-2)+y(z-x)+2(x—y) Y
Which on integration gives
dx+dy+dz (1)
b logy=logz+loga or 10g§=1080
dx+dy+dz=0
Which on integration gives Y=g -.(3)
V4
ey Using multipliers x, y,z we have
Again(1) can be written
dx _dy dz xdx+ydy+zdz
2 - - (.2 2 2
dx dy &z ?’_x+dy+dz & & @ x' =)=z 2xp 2xz x(x +y -i—z)
x _ Y =z X _}; _z_ e o
e DB St X ¥ E
Y=z z-x x-y (J"‘Z)+(2-X)+(x——y) 0 2xdx +2ydy +2zdz _dz
(xz +y2+zz) z
bbb -
x y z .2 Which on integration gives
On integration we get log (x2 + y? + 22 ) =logz+logh
logx+logy+logz=10gb or lo _
EXz=logb o Xyz=ph e PP i (4
From (2) and (3) the genera] solution i z
xyz= f(x+ y+z) Ans Hence from (3) and (4), the required solution is
4 ;
. 2 2 y
\)émplex; + Solve (x —yZ“zz)p'*‘zx}’q::sz x2+y +22=2f(—2—) Ans
. . 2_ 2
Solution : (x Y “ZZ)P+2XJ’9’=2xz )ﬁ 1 2_‘3_‘3=(x+ )z
_ (1) crnple 24 : Solve the differential equation ¥ 5+ 3y Y
Here the auxillary equations are
0z 0z -
2 df 2=—Cil-=f£ :lution:x25;+yza—=(x+yﬁ L)
YTV 2y 2 .2 7
From the last two members of(2) we get The auxillary equations of (1) are
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Ex_zdy dz

23 2 =

Yy (x+y)z

Take first two members of (2) and integrate then

——=——+c
x y
1
——'_=C]
X y
(2) can be written as
& bk kb e
x_Y__z __x y z
B S
Xy x+y (x+y)—(x+y)
dx dy dz
or P el
X y oz
On integration we get
or logx+log y— logz = logc,
X
or log—-}i=Iogc2 or fji._
Zz Z*CZ
From (3) and (4) we have
1 1
X y z Ans,

Example 25 : Find the general solutiop of

Solution : The auxillary equation are

sl 2)
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dx _dy di_ dz.
x Y t  xyt

Taking the first members and integrating, we get
log x=logy+loga=logay
or x=ay,ieyl/x=a

Similarly , from the 2nd and 3rd members

LEA
y

Multiplying the equations (1) by xyt , we get

_tydx txdy xydt tydx+ixdy+xydt
1 3

dz

Integrating

1 1
Z=—=xyl+cC or z——xyt=c
37 39

From (2), (3) and (4) the solution is

z~]—xyt :f(ﬁ)ﬂﬁ[L} Ans.
3 X ¥y

Example 26 : Solve (y +z)p—(x+z)g=x-y

Solution: (y+z)p—(x+z)g=x-y
The auxillary equations are

dx dy dz

yrz (xrn) x

dx+dy +dz

dx dy _ dz _
y+z —(x+z) x-y _\"+2—(a\‘+2)+-\‘31’

1y
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| _ . PARTIAL DIFFERENTIAL EQUATIONS / 34

&z _drt+dy+dz " or £=i—ﬂ or =z - -.(2)
PR PR
Thus we ha j or z=\x +¢
W€ have
—— tdy+dz=0 | Putting the value of z in (i),
Whichonintegration gives y+z
=6 j dx dy
Letus - ; =
tse muliplers (x.7,~2) for 2) Vere Y
i S - dz xdx + ydy — zdz f sinh™ === logy+e, o sinh™ == -logy=c, 3)
Y+2z -(x_*_z)‘\: 4_..,——-'—‘/) Hi \/c_l \/a oee
X=y x(y+z)—y(x+z)—z(x Y |
or dx From (2) and (3) , the required solution is
R=%=i=xdx+ydy—zdz |
z X
0 I f(z* =x*)=sinh™ —=-log y
Example 28 : Solve px(z—2y2)=(z-qy)(z—y2 -2x3)
:
ff Solution: px(z-2y*)=(z-gy)(z-»"-2¥")
: or p)¢:(z—2y2)+qy(z—y2 -2x3)=z(z--yz —2x3) (1)
va? Here the auxillary equation are
!
0 AnS. { dx - dy - dz
x(z—2y2) y(z—y2 —2x’) z(z—y2 —2x3) «(2)
From the last two members of (2) we have
& _&
y z
( 0 Which gives on integration
s logy=logz+loga  or y=az (3)

or
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From the first and third members of (2) we have cot xdx =cot ydy
Integrating,
dx _ dz
x(2~—2y2) Z(Z—y3~2x3) put y=az logsin x = logsin y +log C,
sinx
=C
or "—-d—x-7—h = dz Or siny
_‘_‘—-_'—‘_‘—-—-_
x(z—2a 22) z(z-—a222 D) 3)

Agatin taking the last two mebers, we get

—-(—_d.f_____h dz cot ydy =cotz dz
X(x-24%; B AT )
) w2 =2 Integrating,
or
2dx~a’ 2%y _ 23 d = xdz - 2052 ds logsin y =logsinz +logC,
or (xdz__zdx)‘_az(z Siny__c
xzdx“zzdx)+2x3dx:0 o sinz
or Xdz - Hence the general solution of (1) is given b
""“‘Z*?E.g’.)_c__‘az (2x2dz,_z2dx 24 ( ) g Y
x
: * 2xdx = 0 i i
Oh inteoras: x? siny _ [ sinx
grating | we have sin z 4 sin y
z 2
“‘025—_+x2__ sinx siny
X X = or f B s | T 0
. @ siny sinz
Tom (3) apq @), we by
ve Example 30 : Solve pz—gz=z%+(x+y)’
Y_ [z a2y Solution : We have
% ;_—\‘szj
X 5
Example 29, Soly, t Ans pz-qz=2z"+(x+y) =il1)
x4y
Solutiop, . We ha fanys tan z The Lagrange’s axuillary equations of (1) are
C pt
- ) p anx+qt Y =tap ) i d iz
€ Elgran ) z 1 _=_y_:____
ge Sa“’(i]lary ( » 5 2 2
e -z ' +(x+y)
" Qationg fthe i 1 . 1) _
—-9% 4 ®ndifferential equation Taking the first two members, we get
ta[]x tany = ‘{~—___
anz

dx+dy=0
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Hence the general solution of (1) is given by

R f(E-thed)-o
or Y 5y =
dz i
or mﬂdx 'Example 32 : Solve (z*-2yz-y* ) p+(xy+zx)g=xy-=
Imeglaﬁg olution : We have
log(»* .2
or l)+2x+c (z’—Zyz—yz)p+(xy+zx)q=xy—zx (1
log(>2
et g(z ey, )s 2ec The Lagrang’s auxillary equations of the given differential equation (1) are
€ genreal o1 -
Solution of (1) i given & dy _ de
l°g(x2+y2+ 2 y 22 -2yz—y* xy+zx xy-z
T ) g e
here fisan arh; ) =S (e ) Taking the last two members, we get
ltaWﬁmCtion (y-z)dy=(y+z)dz
[z2 +(x+y)’] 2
Examl)le31.solv ‘f(x'*')') dy—(zdy+ydz)—zdz=0
. e 2
S"‘“tionzweha RASCEE: Integrating,  y’-2yz-2'=(
Ve 2 v
P4y . . -
TheLa s Again choosing x,y,z as multipliers , we get
grallge’sa . .'.(1)
eq“taio : ) xdx + ydy + zdz
ns each fraction=—————
df=i‘§§dz Of(1) are f 0
» 7 1
Tom the ﬁrst N ' = xdx + ydy +zdz =0
0
e ' Integrating x*+y*+28=C,
1. W get .
¥ 3G . ! Hence the general solution of (1) is given by
F
romthelasttwo f(yz_zyz—zz,xz-{-yz-l-zz):o
m '
] %hrs, W ! 2 2 2 2 2
R l eget or Yy -2yz—z =¢(x‘+y +z )
y 2 1
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) 2x+1) & —3p)= e”
EXERCISE 1.3 ; 7N flex+ y)zz_Q4_)__5 ® IO
Solve the following partial differentia] equations :
0 x* y? Yo Xty
O et @ O Sy a0 SmE Ty
y=z)p+(x-y)g=2-%
(3) ( (1 I) u= ue-x+3—2y (12) u=73e " — 3e-5x+21
J’+zx)P—x(x+yz)q=xz_yz @ zx%_z’gi___yz_xz
ox oy | (3 f(F+r-4z=1)=0
O prarnsg : o MULTIPLE CHOICE QUESTIONS
(6) (x’+y2)p+2xyq=(X+y :
0
) a“jf %ﬂx_ . | 01.  The partial differential equation from z = ax+by + 4’ +b* is
Yy
@®) p+3q=52+tan(y"3x) @) z=px+qy+p* +4 (b) z=px+qy+p-q
©) XD~ yg + 52 ~) =g 5 s | (€) z=px—qy+p*—¢° (d) None of these
z Oz
10 +y)|—+— =%
s 10)  (x+y )( Ox * 0 y] 02.  The partial differential equation from : = /| (x).£,(») is,..
(1) 3—4,04
\:0,
Ox ay u(x,0)=4ex 8%z _zg a—l’z_éz
/(‘)/zaxay“ax‘ay (b) x?  ax'oy
t ox “Whents 3z oz &
au=3‘x\‘x Z=_ —_—
e g (c) o0y o x % (d) None
(13) dth
€ solutjop 03.  The partial differential equatior {rom z = f(x* - y*) is,..
fthe ®quatiop, 292y p 9
2= S -==Z = . ug
bty 4 9y 35 =0 which passes th "gf‘} @) py+gx=0 () py-gx=0
A | () -px=0 (d) g+px=0
(M f(x~y)~ Hwer13 | !
\logy~tan-l | ion 22 o)
| 04.  Order of the equation P 1+ > Is
(3) f(xz.}.yZ\zz) (2) f(x+u+z’x2+2yz) 1
=(x~ - (24 iy ‘ (a) Ist order _6) 2nd order
(4) f(xz 2 2 ) =0
| +y'+ 25, %) : (c) 3rd order d) 4th ord
| (5) f(x_y)=x2+10g (d) 4th order

! f(u __21,.];0
\ 5 ,xz _yZ
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0s.

06.

07.

08.

09,

2

The P.D.E. from 2z= %4. Y
a

w7 is,..
A 2= g (b) 2z=xp- g
(€) z=xp+yq @
z=xp-yq

. o’
Solution of éx-f =y is,.
(&) =22y

2 y)+e(y) .
}b)f2=l6x’y+Xf(y)+g(}’)
1
(c) Z=gx2y2+lf(y)+g(y) 1
@) z= gxy2 +xf(y)+g(y)
Order of the equation (g)z . &, 5
&) A3T Zx[h) is,

(a) Ist order
(C)/3(d order (b) 2nd order
Cho .

0se the correct lineay PDE, (d) None of these
(a) z(%)i—%:x

/(b) @-l-@ +ia-'i = xyz

o) » ox oy oz

Ol ()3
(d) 6% = [1 +2)2

D €gree of PD.E y{(%)z _’{ 2 )z} N
») (= z[\) .
IS

(a) One

(¢) Third
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| 10.

11,

| 12.

7.

The equation ptan y+gtanx=sec’z is of order

~@1 ()2
3)0 (d) None of these
o’z 0’z oz .
Equation 37 = 2(@') + (g} =0 js of order
(@1 B2
©)3 (d) None of these

The equation (2x+3y) p+4xg-8pg=x+y is,.

(a) linear (b)«nﬁn—linear
(c) quasi-linear (d) semi linear

Partial differential equtaion obtained by eliminating arbitary constants a & b
from z=ax’-b)? is

Ab) 2z=px—gqy
(d) z=ap® -bg*

(@) z=px+qy
(c) 2z=px+qy

The partial differential equation obtained by eliminating the arbitary function ¢
from z=¢(x+y) is

(a) z=pq (b) z=p+q
(c) pg=1 Ad) p=4q
The equation P, +Q, =R isknwon as
(a) Charpits equation __(byLagrange’s equation
(c) Bernoullis equation (d) Clairant’equation
The Lagrange’s axuillary equations for the partial differential equation
P,+Q =R are
55T ® %~
© % = % (d) None

The general solution of the linear partial differential equation P,+Q =R is

(b) f(u,v)=-1

@) f(uv)=1
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©) £luv)=0 (d) None 2
18.  Solution of partial differenti i
al equati -
@ Hemp)ort o NN fhggds PARTIAL DIFFERENTIAL EQUATIONS
—“Y)=x"+logz
(b) f(x+y)=x+logz
19 7(x3) =i NON-LINEAR IN p AND q
19.  Solution of 22 (d) f(x-y)=y+log S— e
Oulonofa?+z=0,whenx:()z__ey&dz e
T —-=lis,..
(3) z=sinx+cosy ® _ ’ 2.1 INTRODUCTION:
(©) z=cosx+ e’ /'(b) z=sinx-te’ GaBX , . . o . . ,
€ sinx ()N We give below the methos of solving non-linear partial differential equations in certain
20.  The solution of (x2 —y? 23) ) None standard form only.
TE P29 =2y g
(a) log(x* + )2 4 2*) ’ RIEI gype 1: Equation ofthe type f(p,q)=0, i..e equations containing p and q only.
(¢)bothaang b - Method : Let the required solution be
2 - e ethod : Let the required solution
. Alinear partia] differenﬁal equat ( ) one of thes as z=ax+by+c : (1)
(a) Charptis €quation N of first order, commonly know?
/ : 0 0
(C}Hagrange’s lineay T (b) Laplace equation é= a, 55— =b
n
(d) Bernoullis equation
On putting these values in f(p,q)=0
AN SWER KEY (MULTI
PLE CHOICE QUESTIONS) we get f(a,b)=0
01. .
(@ 02.(a) 03 From this, find the value ofb in terms ofa and substitute the value of b in (1), that will be
07.(c) 08.(b) -(a) 04, b a5, (5 06. (®) the required solution.
13.(b) 09, (b) . E mﬁ(l . fi 2, 2
14.(d) s 10. (a) 1. (b) 12. (0) xamplel:Solve  p? +4° =1
19.( +(b) ' :
(b) 20.(0) 51 @ 16. (a) 17. () 18. (a) Solution : Let z=ax+by+c
(c
o0z o0z
== —=b
P=ox %175

On substiting the value of p and q in (1), we have

at+b' =1 Or p— f1_g2
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e PARTIAL DIFFERENTIAL EQUATIONS / 4 _—
C u,v)=0
8 _ ) (d) None 2
+ Solution of partig differential equat; i
@® f(s-y)or quation p+g+2xz=0 is PARTIAL DIFFERENTIAL EQUATIONS
“Y)=x"+log:
b 3 V=Xt 10g z
9 7)) =x+1ogs (®) flx+y) NON-LINEAR IN pAND q
19. . 62 (d) f X— y’) =Y + lOg—r — —————— — —_—
Solution of Exéﬂzo’“’hen *=0z2p g & . (
(@) 2=sin 4 g dy - un 2.1 INTRODUCTION:
b > = g oY SX
©) 2= COSX+e¥ gip 1 - ) z=sinxne oo We give below the methos of solving non-linear partial differential equations in certain
20.  The solution of (¥ oy, ) (d) None standard form only.
)P+ 20 = 5
(2) log(x? 4 2, 2) VI=2xz is,, dype 1: Equation ofthe type f(p,q)=0, i..e equations containing p and q only.
Pg P 42 '
) (c)/b&h aandp (b) g Method : Let the required solution be
L Aj
linear Partig)] differenﬁal (d) None of thes a5 z=ax+by+c 1)
e : n
(%) Charpyis Quation uation of fy order, commonly K1 5 5
/ Z Z
| 2% s, 22 b
(C}La Slange’s linear o, . (b) Laplace equation! o * ady
Qaution -
i atio
(d) Beroullis equ On putting these values in f(p,q)=0
AN SWER
KEY (m
1) § we get a,b)=0
o1 TIPLE CHOICE QUESTIONS) & Flasb)
(a) 02.(a) From this, find the value ofb in terms ofa and substitute the value of b in (1), that will be
07.(c) - 03, (a) ) the required solution.
(b) 04. (b 06 &
13-(1)) {4 @ 09, (b) (b) 05. (a) g (b) Exam-plél : Solve pr+g* =1
' 10 12.
19, -(2) 11.(b
(b) 20,(¢) 1s. (b) 1 (®) 8 () Solution : Let z=ax+by+c
21, (g) @ 17 |
0z 0z _ b
L p=—=a,q=—=
0x oy
Wy % On substiting the value of p and q in (1), we have

a+b =1 Or p=—f1_o7
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PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR IN P ANDd

dz dz )
Rule. Assume u = x + ay replace p and q by 5 and a 7, Inthe given equation and then
a .ic . A ; :
() Z=ax+\‘(41—az)y+c (6) z=ax-— a‘lj solve the ordinary differential equation obtained.
: xaﬁ/ Sol l+g)=gz
Type I1: Equation ofthe type Exantf1&%s : Solve p(1+9)=4
= Solution : p(l+g)=gz (D)
Z—Px+qy+f(p,q) (
: ou ou
ItSOhIton132=GX+by+f(a,b) ; ;;:x-{-ay::)a:], a—};::
Example 4 ; 5, ,
Wezsz+qy+pz+q1 % 0z 0z0u dz and 0z 0zdu dz
= — ==} o e — T
Solutign ; 2= ) 0x OQudx du i oy 0Oudy du (1) becomes
PJC+qy+p +q2 P .
Itssolutl()nls P=a.g=— 5@.[].{“(12):(;&2 or 1+a£=a2
g ‘bz=GX+by+a1 Wb ARE, du du du du
Exa ]
mples-SOIVe Z=PI+qy+2\/\ dz { dz _az-1 du a ” adz
—_—=az -  —— _— or =
Sﬂluﬁ(m: . of ? du . or du a or dz az-1 az—1
2=
pX+qy+2J;q u=log(az—1)+loge
Its Solution jg .
‘-:.ax+
&TYPEIH,E by+2‘/a\b Ans. RS x+ay=logc(az-1) Ans.
* “Quatiq ) A A
ofthe type £ (z - : ntainlﬂg * N
Let Po4)=0 e, equations not €0

X ¥xample 7 : Solve p(l+qz)=(f(3—a)
funetjoy, Of U wheye | |

Solution : Let u = x + by
u

|
=X +qy dz dz
du So that P e and ¢
= 1 au % 2 .
X and \; =q Substituting these values of p and q in the given equation we have
b 2 4 3 d Y| d
xh\-‘*—-—l-f..__:dz a 1+b2(_Z_J =b—+(z—a)
“ox - du du du
U
0
9=2 o
Oy~ E;gti < 4z )
. E;(a) 0;{‘”
a €5 £ it

Mordipng: . ¢
Mary differential equation of
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5[ dz 2
1+ 22| _ 2
[d“) —b(z'_“) or bz[iz- =h
du z—ab-1

dz

dz
du ‘gm

L
mzjdu.{,c

(R
« e

ox
where ?=3X or logz=¥

Oz
—
Or 22 ax
ShE
X

Let =X +ay

da o and £z dz

Then (2) becomes

(2)

PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR IN p AN

=}
=

6]

dz \’ dz ) Y1
Y =1 o + = =—
[ du) :| or (du) a (duj =

or IZdZ:I du Fip or.z_.= u e
N 2 Jlia
— 2
1+“227=“+CW=X+ay+cm
=logx+ay+cVl+a®
EXERCISE 2.2
1' 22(p2+qz+l)=1 2. p+yqi=z
3. 1+¢* =q(z-a)
ANSWER 2.2 :
0 (P 5 2JzolEEtaley
| e @ e
3) x;by%(z—a)z%(z_a)\/(z_—a)tyﬂmh_l[z;a]
'FYPE IV : Equation of the type

fi(x.p)=1.(¥.9)

In these equations, z is absent and the terms containing x and p can be written on one

side and the terms containing y and q can be written on the other side.




———— —— — = =

dy-l'c

PARTIALDIFFE
RENTIAL R
U
. o QUATIONS NON-LINEAR IN p AND q /5
2
Ji(x, p) = :
( i P)=a, solve it for p, Let p=F(x)
£y,
’ o 9)=q, Solve it for p, Let g=F,(»)
Since <82y, '3 h
: ""é";dx—l-gidy
y or dz =
pdx +
] d qdy
e, “=F(x)ax
ﬁ‘{a E ) +F(3’)dy 0
mple 9 : Solye ,_ " [R@a [ ()
x _q+y
Solution : P—x = 2
~ 4+ (say)
Putting these va} +c d 9=
auesofpand qor Y
x? +c dx
z""‘[—{i ) +(C‘-y2)dy
d{ : +c")+[cy\£ +
: xample 10 : Solve ,2 . 2 ST
€Ep+g =22(x+y) Ans,
Solution : p2+q2=zz(x+y) or [3)2+[9T
z by b
z “(k+y)
10z) (14:) 2
or zdx z ay L or ~=0 Q__{
ox |+ B{__
Y [Sxq
hY
VA * (ozY)
or ox +(_J Y e S
ox dy ere——;aaz
Op 10
8z
=
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or pr+0 =x+y or P -x=y-0%=a
P-x=a or P=va+x
y-0’'=a or 0=\y-a

Therefore, the equation 92 Z dx +g—idy &
dZ=Pdx+Qdy

gives dZ =Ja+x dc+Jy—ady

Z=J‘\/mdx+j\/yTady+c

2 ) 3
or logz:g(a +x)2 +§(y—a)2 +c Ans.
EXERCISE 2.3 :
Solve
(D) g-p+x-y=0 2) Jp+a=2x
3) g=xp+p’ @) zz(pz+q2)=x2+y2
6)  =(p'-q")=x-y © P -gi=x-y

N (P +q)y=qz

ANSWER 2.3 :

1
() 22=(x+a)2+(y+a)2+b (2) Z=—6-(2x—a)3+a2y+b

2 / 2
3) z=_%+{x_’1‘zﬁ.a_+alog(x+\/xz+4a)}+ay+b
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T |+
@ 22=x\lx2+a+alog(:c+x]x3+a)+y yz—a—alog(}%\[)"’/a)

2io )}u ¢
2 £ L
® 2 =(x+a)"(y+a) 1 6z =%(-"+C +3U
m 2 =(cx+a2)+czy2
#2  CHARPIT'S METHOD . i
| o

G _ . ind
eneral method for solving partial differential equation with tWO

Solution : T ¢t th ial di
€ general partia] differential equation be --'(U

The o qdy {h
emamthi o] h ech

pg. Let the re] its method s to find another relat”

ation be
#(x,y,2,p,q)=0
On o)y e
Vlng (])and (3), we get the values ofp? ,mtegra

€se v e
alueg ofpand qwhen substituted in (2), It beed™ ¥y ﬁi\rif’g

To d“lﬁl‘m' d
n
9, (1) ang (3) are differentiated W-I-t * g
of
0y 5+ 2L0p afoq 1 i)
POx 0q0 Firs
%.La‘ﬁ Adh N ﬂ.qq 5 ’tx(
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Sf o B) OI 0P, 0108 4
dy 0z dpdy 0Oqady
g@_}.?ﬂ +2£§£+.a_¢.§£=0
oy 06z 0Opdy 0qdy

w.rt y(Second pair)

op
Eliminating 7~ between the equation of first pair ,we have

81 0f ;, 8700 9 o9, 0&Cq
_Op_0x 0z 0q 0x 0x 0z 0q 0x
ox of 29

op op

or

ofa¢ _Peos |, [070¢ B40F) 0g[6/0¢ Béof | g
0z 0p 0z0p) Ox\dgqdp 0dqadp -(4)

oq
On eliminating 5 between the equations of second pair, we have

[ﬂ@_%ﬂ cq0L08 0831 ﬂ(ﬂ@_m}:):o
0y dq 0Oyadq e 0z0q 0zdq) Ox\0Opdq OJpoq -(5)

 9p_ 0’z _dgq
Adding (4) and (5) and keeping in view the relation 5 Dxdy » 5 » theterms of the

last brackets of (4) an (5)cancel. On rearranging , we get

oo, o) (o, & e«z(_ o éf_) (__ajg@ AL D
af[ax+pazj+aq[ay+qazJ+az P Toq) o) T ag oy "

_T (o), (-2 [_ d_,¥\%
o [ 6p](6z]+[ 6q]6y+ pap qaq]az
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o . o \og
+(—+p‘)‘+(ai of \op _
N A P
Equ‘ation (6)isLagrange’s linear e

ariable, Jts Subsidiary equations are

% = % = & dp
AN = =4
| w o "L T, gy
| I o éa,qal 0 (D
‘ ) 0z
Any of'the integrals of i
taken a5 asoum o 28558 6). Such g i '
" . refation (3). How, erw Integra] mvolving p or q or both lzﬂﬁ
s :I?I%qo?envzd from (7). The Telatiol’l ae should choose the simplest integral inv0 Tllé
pand q are subst; . €quati ;
. q are substituted i, ().0n intgg:uon (1) gives the value p and & o{

Example 11 : Solve px+qy = pq

Solution : f(x,y,z,p,q)=0 is PX+qy~pg_o

Y_,9_, ¥ _

Charpits equations are

& __dy __ dz 4

of of F _ of i
-Z % pZL T T s d
op oq op qaq gw% g\q\d\;»

o dy & %
—(x-q) -(y-p) m

_q(y\p)§df§

We have choose the simplest integra] invoh:
Ing

dp _dq

putting for p inthe given equation (1), we gey

...(6)

ation newy eq.(2) gives the solutio?

(1)

qutaionof the first order wih X,9,2,p,q S independ?

PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR IN p AND q / 57

_y+ax

q(wc+y)=aq2 ~q "

p=ag=y+ax
Now dz = pdx + qdy
Putting for p and q in (2), we get

y+ax
a

dz=(y+ax)dx+ dy

adz =(y+ax)dx+(y+ax)dy
adz = (y + ax)(adx + dy)

2
Integrating az= (p+ax) +2ax) +b

Example 12 : Solve ( P +q’)=¢qz
Solution : f(x,y,z,p.g)=0 is (P2 +q2)y—qz=0
@- 0 @‘ "

2 af ,g_=2 af

—-—=U,—= +q ,—=g— s'—=2 4

ax oy P *q 5% q P py aq qy
Now Charpits equations are

e _ dy _ dz __dp __dq

A A A A

p Oq o 0 ox &z &y oz

dy _ dy - dz - dp - dq _ﬂ
or -2py -2q+z —2p2y—2q2y+qz -pq P2+q2—q2 0

We have to choose the simplest integral involving p and q

dp d
g =-‘13— or L= 4 pdp+qdp=0
-pq4 P p p



a——
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Integratin 2
: P +q’ =a (say) BB or p=ag 2)

Putting for 2. 2 ;
P +q° mth i
¥ ©€quation (1), we get Putting this value of p in (1), we get

a’y=gz or ay e a'y? g*(a+1)(ax+y)=1
z SO p=ya’ —q" = la" - -

1 a
a
P:E Zz-—azyl

q= and p= 1

{(a+1)(ax+y)}" {(a+1)(ax+y)}"

Putting these values of p and q in dz = pdx+gdy, we get

Now
5 dz= pdx+ qdy (2)

Uttmg fOl‘p and q (2)’ we get il adx+ dy -

{(a+1)(ax+y)]
— a 2
%= ‘z‘m‘b‘ iy o do=a T Integrating,
z Zdz=gq zz_azygdx+azyd}’
d 5 z=\/(a+1)=2\/(ax+y)+b
Hz—aydy
z" - a’y? o Example 14 : Solve, z=pg

T 12 Solution : The given differential equation is

negrating,weget —— 22 i

2 l\/-_a\yha'x+b (-Put 22 az 2 t) fEZ—PQ:'O ’(1)
~a’y? =
Onsquaring, i g Charpit’s auxillary equation are
E © Ay =(ax vy
Xample 13 ; Solve (p+Q)(Px+Qy)__1 - Ans. gp_=£‘1 -
Solution : We haye P4
Fs From whch it follows that p=ag (2
=(p+q)(Px+qy)_.1_0 )
Charpi Solving (1) and (2) simultaneously for p and q , we get
lt’Sa_x 2 .
umaryequatmns te wskd) 2
z — —_—
*Hjﬁ_____ . g= f(;) and p=a ’[a)
P(P+q)+0 =";(‘;—:?_._,__ ------
From wh:1. - Putting these values of p and q in dz = pdx +qdy, we get
Which jt follows thas

dz=+z .{szx+-j—;dJ’}
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& L
or N JEdHJE@

Integrating 2z = ‘/‘_‘-“(—}J}*W
a
Which is a complete integral of (1).
Example 15 : Solve q+xp=p?

Solution : We have
q+xp= p2
or

f=q+px-p*=0

Ly .. 1
Charpit’s auxillary equation are v

From which it follows that dg=0o0r g=g4
Putting g=gq in equation (1) we get ?

a+tpx-p'=0 or

Pz*px-azo

Example 16 : Solve z* = pgxy
Solution : The given differential equation is
f=2-pgay=0 (1)
Charpit’s auxillary equations are

dp dg _dx _dy

-pqy+2pz —pgx+2qz qxy pxy

From which it follows that

xdp + pdx _ ydq + qdy
2pxz 2q yz

xdp+ pdx _ ydg+qdy
px qy

or

Integrating, log px + log gy + log a*

Lopx=a‘qy +(2)

Solving (1) and (2) simultaneously for p and q , we get

Putting thse values of p and q in dz = pdx +qdy , we get

dre Bt Ly or Bl gy LY
X ay z X ay

1
Integraing, logz = alogx+ : log y +logh

1

or z=bx" y°

Which is a complete integral of (1).
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I

EXERCISE 24 : (aoD" + atD"“'D'+ W 0 L )z = F(x,y)
Solve the folliwng
(1) z=pg & f(D,D")z=F(x.y)
2
- ) (p+ 9)(px+gy)-1=0 RULES FOR FINDING THE COMPLEMENTARY FUNCTION
Z=px+qy+p’+q°
il 4) z=px+qly Consider the equation
5 2 _ :
() Z pqu (6) Px+pq+qv=yz a...az_z._*.a_az_z.{.a ﬁ:o 2 ' '2
D grap=p (8) | | “oxr 'oxay oy o (@D’ +a, DD+ 4,D")z=0
g=3p*
ANSWER 2.4 . 1% step : Put p=m and p'=1, am* +am+a, =0
M Naz=arsyeyg - This the auxillary equation.
s zm = Zm +b 2" step : Solve the auxillary equation.
) Z=aqx+ph 2472
V+a +p s " :
4 - Case 1 : Ifthe roots of the auxillary equation and real and different ; say m,,m,
(5) b_ 1k ( ) (l+a)z=l:\/a"x+\f(b+y)r o
Sy Then C.F. = f,(y +mx)+ f,(y+m,x)

6
(6) 10g(z-—ax)=y—alog(a+J’)+b

—axer _ 1 2 _ Case 2 : Ifthe roots are equal say m
) Z=axe” —Eaze *4b ®
2.3 LINEAR HOM Z=ax+34%y, 1 Then C.F. = f;(y+mx)+xf,(y+mx)
OGENoUs
ORDER WITH ¢ PARTIAL pyp
ONSTANT ¢ FERENTIAL g " Example 17: D —4D*D'+3DD'2)z =0
. U OF »  Example 17 : Solve + z
An equation of the type OEFFICIENTS : QUATION ( )
. Solution: (D’ -4D?D'+3DD")z=0 [D=m, D'=1]
oyl 0"
? " +a ax"_lz totg __‘2"_{ _ e B . ,
) oy "o =F(x,y) Its auxillary equationis m” —4m”+3m =0 or m(m —4m +3) =0
is crrllledahom0 (1)

. genous | .
coefficients, | ; Inear pratja] g;
Lt isc 1a] dlffere 1 .
same order. alled home Ntial equation ofpgp, order with const?’ I

genous b
CCause al] the terms contaip derivatives oft

. 0
Puﬁlng 'a;“?-Dand—ag_:Dl (l)be 3 2 62
y 7 com d'z Jz =
= Example 18: Solve 6)(2 =# axay +4 ay?_ =0.

m(m—l)(m—3)=0,m=0,l,3

The required solutin is z:f,(y)+f2(y+x)+f3(y+3x) Ans.
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Solution : (D? —4DD 'y 4p» )=0

Its auxilliary equation is [D ]
= fn, D' = 1

2
m —4m+4=( or (m—2)2=0 or m=2,2

The required solution js zZ=
—f,(y+2x)+xf(
2 y+x) Ans,

Example19:§ ¥z &'z
olve o =0

Selution : We have

o'z 2
ox? EyTZO """"

(1)

The equation (1) can be writtep as
(p*-p )z=0

Its auxillary equatiop is
m'—1=¢

or (rn—l)(m+1)(n12+1)={)

m=1, -1 +;
The generg) solution (D is

Z=
ﬁ(y+x)+fz(y~x)+£(y+u)

Exam . = _f (y |
ple 20: Solve (D3 DDy 11p | |
. .D? D' =(
SOllltIOI'l - We have 6 3)2
D' _ Dp -
( 6D? +1 1D.p? 6D" ) =
z=)

The ayx;
auxillary equation (1)

PANDgq / 64
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m’ —6m* +11lm—-6=0
or (m-1)(m-2)(m-3)=0
% m=1,2,3
The general solution of (1) is

nz=fi(y+x)+ L (y+2x)+ (v +3x)

EXERCISE 2.5 :

Solve the following equtions

2 42 2 2 2 2
(1) af+ 82_56320 ) 26f+562+2az=0
ox® oxdy Oy -

3) (D3—6D2D'+11DD'2—6D'3)2:0 4) =2

3 2 5 3 o'z 8z
(5) (D’-6D°D' +12DD*-8D")z=0 (6) e
ANSWER 2.5:
M 2= f(+x)+ £(r-5%) @  z=f(y-x)+fi(y-2)

B)  z=fi(p+a)+fy(p20)+ S (p43x) @) z=f(y+x)+f (v+x)

) z=f(y+2x)+xf (y+2x)+x"f3(y+2x)

(6) z:fl(y+x)+f2(y—x)+f3(y+ix)+ﬁ(y—ix)
-RULES FOR FINDING THE PARTICULAR INTEGRAL :

Given partial differential equation is
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!‘4 .

@

(i)

(ii)

()

F(D.D)Z = F(x,y)

1

PI.= f(D,D')F(x’y)

When F‘(){,‘,J y) = eﬂ-ﬁby PI =-_.___I_____eax+by
f(D,D)
N ea.r+by
f(a,b)

[P“fD=a,D'=b]

Wi .
en F(x,y)-sm(ax+by) or cos(ax+by)

PI= .
W \‘\\\ 0
f(Dz,DD ',D‘Z)sm(ax"“by) or cos(ax+b}’)
Put D'e_y
DD'=-ab
D|2 = —bz
] Sln(ax+by)0"008(ax+by)
f(‘_azs—‘ab,—-bz)
When F(x, y) = x"
Ple=__1
' ‘-‘\ m_p
f(D,D')xy :[f(D,D)J xm' n
Expan [f(D -1
OD)] e
] asceding Power of D o D’ and
Whep oeprate on x™ " term by t€

Any function g (x »)
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Example 21 : Sovle P =

|
Pl.=——F(x,y
f (D, D |) ( )
1 '
Resolve r ( D D') into partial fractions. Considering f (D, D ) as a function¥

of D alone P.1.= D—lmD' F(x,y)sz(x,c—mx)dx when c replaced by y+mx,,

after into

Case 1 : When R.H.S. — gax+tr

o’z o’z 4 0’z et

3 +
ox’ oy 6y3

)
0’z 0’z &z e

SO]“ﬁon . ax'.'a —3ax2 ay +4ay3 -

Given equation in symbolic formis
(D*-3D’D'+4D")z ="
ItsAE.is ;* —3;% +4 =0 whence, m=-1,2,2

C.F=f(y-x)+f,(y+2x)+xf,(y+2x)

Pl.=— 21 Sex+2y
D =-3D°D'+4D'

x+2y

1
T 1-6+32 T 27

x+2y e

Put D=1,D'=2

Hence complete solution is

x+2y

z-=f1(y—x)+]‘;(y+2x)+xj;(y+2x)+ e
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&0

#3)

®)

™

(1)
@)
€)
@)

©)

(6)

Ans, 1
(8) z= fi(y+2x)+ f, (y+3x)+—e&*
EXERCISE 2.6 63
9z o i Case Il : WhenR.H.S. =sin(ax+by) or cos(ax+by)
axz Ey‘—z"-e 4 ’ 622 azz 622 |
@ 527—55x3y+6§:em ’z Oz , 8z . 5
0%z i 0%z +462 Example 22 : Solve 6x3_46x2 6y+46x6y2 =281n(3x+ J’)
ox’ 5?5} P T s 5 5
» % 5}';‘752“2‘“2—2;:9"')! ¥z &z &z .
‘_3.3_‘:.__ Oz oy = oy oy ~ Solution : 6x3_46x2 6y+46x6y2 =2sin(3x+2y)
& 'é‘x‘;—é;z =y
® (
~2DD'y Dlz)z =" 0 0 .
- : —:D —:D
azz 62 Putlng ax E]
-a;:—z‘“gx.—i'—_'z—g-_z_: elx+3y ay
v ® L o g D’z =4D’D'z+4DD"z = 2sin(3x+2y)
£y 5—&_.5}1_1‘6%}72:6){!)(”_2}:) z= z+ z=2sin(3x+2y
ANSWE ) ‘
R26: AE.is D'—4D*D'+4DD*? =0 or D(D*-4DD'+4D")=0
zzf;(}’+x + ety
) fz(y-x)_‘__§___ Put D=m, D"=]
= — 2-.- —
z ﬁ(y+2x)+£(y"‘3x)+lex+y m(m'—4m+4)=0 or m(m-2)"=0 = m=0,2,2
_ CF is ﬁ(y)+f2(y+2x)+xf3(y+2x)
Z=fi(y+2x 2
)+%(y+2x)+f_ezx+y
. Pl.=— 21' ~2sin(3x+2y)
- D’ —4D*D'+4DD"
2= 1 (»+3
(Y x)+f2(y+4x) 1
+ e X~y
20° _2 > : —sin(3x+2y)
Z=f( = "D(D*-4DD'+4D")
ly)+xf2(y)+];(y+2x) i
+—-ez-1'-y
8 1 . 2 .
z= - sin(3x+2y)=——sin(3x+2
ﬁ(y”)*xf 2 D[-9-4(-6)+4(-4)] (Fe+27) D 2

=-§[—cos(3x+2y)] :§c03(3x+2y)
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General solution is -LINEAR IN pANDq / 70 __

Hence the complete solutionis z = C.F.+ P.I.

2= fi(»)+ £, : _ L i
() 2(y+2x)+xf3(y+2x)+gcos(3x+2y) ie. z—fl(y)+f2(y+x)+zsm(x+2y) 6sm(x 2y)
2 Ans
0* 2 Z
Example 23 : Solve ‘;"'Q‘E‘-Sinx P . .,
Ox Ox dy Cos2y & " Example 24 : Solve (D'+DD'—6D‘)z=cos(2x+y)
. 0’z 0° _ . 2 : 2\
Solutmn; "—-——-____E____ . Solution : (D +DD'-6D )Z—COS(2x+y)
o' grgy, Sinxcos2y
AE. 1S m2+m—-6=0 Oor m=2-3
The given €quation Canbewrlttenmth
¢ form CF.=f.(y+2x)+ f,(y—3x)
i '
( DD )z—smxcoszy 1
Pl.= : cos(2x+y)
\ where D=2 p._ @ D? +DD'-6D
» %y
Wit D*+DD'-6D* =—4-2-6(-1)=0
ntmg D=m alld Dt___
=1, the auxmaryeqUatioms It is case of failure.
m —m=()
or (g 1
)-—0, m=( | Now P.I.:Dj DD—6D" cos(2x+y)
3 _+ —_
C
f'(y)"‘f2(y+x)
. 2 =x————cos{2x+
Pl 1 Case IV : xom—cos(2x+y) =xomroos(2x+y)

D X
S R TN =——Dcos(2x+
=-~L____l ¥ 2(_4)_2c082(2x+y) 7 cos(2x+y)
D g

Dp Z[Sm(x+2y)+sin(x_.2y)]

1 =2%sin(2x+y)=%sin(2x+y)
:‘_‘—\\ .
PutD _ 2D2“DD'SIn(x+2y)+—I-..______l_____h ‘
==L Dpr 207 _ppisin(x-2y) X
mtheﬁrstinte : DD z:fl(y+2x)+f2(y-3x)+—5-sm(2x+y) Ans.
8raland py _ |
~Lsin(xy =~LDp'= in the second integ” l ; i \ . .
— ‘5\2)’) 1 sin ' ample 25: Solve the equation (D’ =7DD"~6D )z=sin(x+2y)+e™
- -I5(G) +5 3n(x-2y)

2

-._1_ » el ]
( 2) 2Sln(x+2y)"--gsin(x_2y)



Its auxillary equation i

m3—7 —-6=

m 0 or (m+1)(m+2)(m_3)=0___>m=,1,__2,3
CF = -

Sy Jr)Jffz(y—zx)ﬂ;(y+3x)
PI.= 1

\j .
D3 _._7DD'-_6D.3 I:Sln(.r-{- 2};)+ el.&w'\-]

= 1

\ .
DS__7DD2_6D.3 Sln(x+2y)+ 1 -
D3-.‘7DD|2_6D,3 €
= 1
D* _ )
DD H6DIZD|S]n(x+2y)+-—'—____€ir—___
3 5 3
Pt ey pr () -7(2)(1" - 6(1)
e
~D 757 _
PG pin(rray), e
| 8-14_¢
27 -si
D+24p "(sz)*flgezm 1 LS
1 . 3%Sin(r+2y)’l’2’
:-—_—_‘\_ .
3 9D2+8DD’Sm(x+2y)"'-—l-e2x+y 1
=_ D
3 %Sin (2x + y) - iez-"*—“
- -L . 12
, 75DSln(x+2 )__] g 1
ence T §5° i
he CO]]]plete S(Jhlt] 12 75 Cos (x + 2_})) - _l_e2x+_1'

12
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EXERCISE 2.7 :

Solve the following.

5z _ 8%z 9’z

L. o aey 5 =sinx [2D* -5DD*2D" |2 =5sin(2x + y)
'z &% , :
3. 7 oxoy =cos(x+2y) 4, (D“—DD )z:cosxcos2y
5. (D*+2D%+D")z=sin(x+2y)
2 2 2
6. ) =3 oz +2af=e3“”+sin(x+2y)
Ox oxoy oy
ANSWER 2.7 :
(1 z:fl(y+x)+1f2(y+x)—sinx
5
2) z=f,(y+2x)+f2(2y+x)—§xcos(2x+y)
(3)  z=f(y)++fi(y+x)+cos(x+2y)
1
) z=f,(y)+f2(y+x)+écos(x+Zy)—gcos(x—2y)
1.
S z=1 (y—x)+xf2(y—x)——g—sm(x-Zy)
1 aey 1
(6) z=fl(y+x)+f2(y+2x)+zez' & —Tgsm(x—zy)

Case III : When R.H.S. = x""

Example 26 : Find the general integral of the equation
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R |

& i ; 8 ., 0
5;§+3 af.;y ki 2%;:; =Xty Solution : with D= 5;=D = é)") the given equation can be written in the form
Solution : éii+3 0’z 0’z (Dz +DD'- 6D")z =x+y

Writing D =m and p' =1 ., the auxillary equationis ;> + ;-6 =0

g 0 o
with D=—,D'="_ ; or (m+3)(m~—2)=0::>m=—3,2
Ox oy , the given €quation can be written in the form
CF.=f(y-3x)+f,(y+2x
(D2+3DD‘+2D‘1)Z=x+y 1( ) 2( )
WI'itiI‘lgD—m and :
= o - . Pl.= S(x+
l’thea“’“uﬁfyequationis N D2+DD'—6D'"( )
m +3m 47 <
oo (m+1)(”’+2)=0,m=_1 _ 1 (, D' 6D?) 1 [, D
Eom o= == Ip——— J +(x+y)=——2[l-—+ ....... :, (x+y)
. “f[(y‘x)"'fz(y—-Zx) D'\ D D D D
Pl = 1 2
T A 1 [ 1 1 1 yx
D +3DD! ,2(x+y — +yv——of1 ]:— x+y— =——y=—
=__l_ 3D' 2 ”2 % P
D? (]+qf)-_+"§2'_J(x+y)=__l._(l__3D' The complete solution is
D2 _'_5“ ..... )(x+y) yx2
1 z=f,(y—3x)+f2(y+2x)+— Ans.
> “J’“%(l)]:J_[ ) 2
DZ x+y._3x] ¥
632 632 2x 2
1 2 . ; —-2 =2e” +3x”
=B?[y“2x]=£y~x3 Example 28 : Solve e oxioy Y
27 3
Soluti 233_2 0’z =2e* +3x7y
olution : o ox’ oy
(D’ ~2D*D")z=2¢" +3x’y
[t axuillary equation is
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SENTIAL EQUATIONS NON-LINEAR INpANDgq / 76 __ EXERCISE 2.8 :
m "21?22:
§ ( Solve the following.
m m—-2)=0
2 2 2
27 8% az+362+232:121y
A N I 2 oy 0y
m=0a0>2 ) axz 5y2 x@y Y
C.F = 2 2 2
fi(J’)*‘xﬁ(y)+jg(y+2x) 3 0z 0z _ 2af=xy 4 r+2s+t=2(y—x)+sin(x—y)
' ox* oxoy Oy
Pl = 1 (2 2
3 2 2 2
D -2prpiie +3xy) 522_(12?2_2:);2 6 65_ ore +a§=x2+y
-1 : 1 R Y o oxoy oy
D3—2 2 '2ex+
DD BT:EBZ_ET?”‘ % o o o2 2
7 +3 —4 2=x+siny 3. (D3 3D2D')2—xy
’ ' ox*  oxdy Oy
=) € 1
2Y —2(2R(m 3 x ANSWER 2.8 :
(2)'~2(2y7() 03(1521)' xy_i+i(lh2D. )
_—EJ D g X X'y
(1) Ans. z:f;(y—x)-f'_fz(y'i'X)-l-"é——T
e2x 3
e 2D 4
+— 1+-—._._ 2 2x 3 Ex_
4 D3( D ----]xy=i+3_ s 2 " ) @ Ans z=fi(y-x)+fo(y-20)+ 20y -
4 D3 y+-_sz=§___+_3_ xz e
D 4 D? Y 3 3 4
eZ.t 3 X y+£_
=—iify ] o5 2 @) Ans z=fi(y=2x)+fo(y+I)+= =+
4 J’D3x +_._?x3__e o
D q_\+3y““—-—-—._._ x6 x 5
4 345+2Z-S_'—'6"=:f_._+ﬂ+_{6_ 2 3 iSin(x_y)
_ 1 - WD, 4 20 60 * (4) Ans. z=f1(y_x)+xf2(y—x)+x y—x + 5
15 x+3x5y+xﬁ)
Hencetheco (5)  Ans z=f(y+ax)+f2(y—ax)+£
Mplete Solution i - i 12
z&f( 4 ny x3
() i RRVEANE S
ns. A(y)+ﬁ(y+2x)+€h(15e2"+3x5y+xb) ©)  Ans z=fi(y+x)+ah (y e+
0
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7 -
) Ans,z-f](y+x)+f2(y—4x)+£3—+—1— i
e sin y
®)

Ans,

2= £(»)+f, (» )+f3(y+3x)+xy
60 ' 120

CaselV: WhenR.H.S.=Any function -

Example 29 : Soye (p? L
. D -DD 2D|2)
Zh(y.._l)e-l’

Solution ; (D2 -DD'-2p .z)

z:"(y—l)e*
AE.j
5 Dz-D_D'_..zDQ__:O 0 5
(m-2) o
m-2 =
(m+1)"03 or m-_—-_2’___1
CF.= f(y+2x)+f(
x)
\
_‘.DD' 2D|2 (y 1)
BB
D+D) b 55x(
. ~2D)W=1)e* <
ut y=c_7, ) D+D ”:c 2x—1)e rdx]
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:(c+x)e’ —e"+e"

=ce" +xe* =(y-x)e" +xe" Pt c=y-x
:yel'

Hence complete solution is

z=ﬁ(y+2x)+f2(y—x)+ye" Ans.
& 622+ 0%z 6622 cos
. - =)COoSX
xample 30 . SOlve ax?_ axa’v a}/'z y
Soluti 622 9 652-. cos
. = £
olution : A 7 253y 6y y
(D2 +DD'—6D'2):ycosx
It auxillary equation 1s,
m*+m-6=0
(m+3)(m-2)=0
m=2,-3

CF.=f(y+2x)+ f,(y-3x)

P.i : cosx = ! COSX

1=t pp-6D"" (D-2D")(D+3D")°
1 :
=D_2Drj(c+3x)cosxdx Put y=c+3x
1 ; 1 .
=D_ZDrl:(C+3X)Slnx+3COSX:|—-D_ D'[ySInx"f'BCOS.Y] P ut
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c+3x= ¥y '
f(D,D)=fi(x.y)
- I [(C —2x)sinx + 3cosx:|dx p 2 Its solufion, Bk ity
ut y=c—2¥
~(c—2 ’ Complementary Function: Let the non-homogenous equation be
x)(‘cosx)—-Zsinx+3sinx;—_ycosr ; pY
C‘zx:y s +SlI‘lx a: a:
(D-mD'-a)z=0 or a——ma——az:()
x i
Hence the complete solution jg
p—mg=az
z=f, (y +2x)+
AFACS 3x) +sinx — ycos x Ans. The Languages’ subsidiary equations are,..
EXERCs
Solve the fOllowmg E2.9 " rci{ 3 dy _ E
1 I -m az
' (D-DY(D+2pY), -
)( D')z= (y +1)e‘ From first two relations we have, mdx = dy
&z a2
2. Ll i dy+mdx=0 = y+mx=c (1)
2 ay2 = tap? xtany"‘tanxtan3y 'y + max y+mx=c (
. . dz 1 a
3. (Dz—DD'-. 2D'2)z—(2x2 and from first and third relation, a’x=;2-=>x=;1082+61 =>z=06e"  .(2)
= + Xy — 2)
Y )sinxy
e From (1) and (2), we have z =e"¢(y +mx)
W . ANSWER 5 ¢
(+x)+ £,(y ~2x) 4 yer Similarly the solution of (D —m D'-a) z=0 is
@) h (y + x) +f, (x » 1 z=e"¢, (y + m,t) +xe"¢, (y + mx)

Example 31 : Solve (D+D'*2)(D+4D"3)z: 0

) B

Solution : The equation can be rewritten as,
(D-(-D)-2}{D(~4D) -3}z =0
i g
! Hence the solution1s

zzez"qﬁl(y—’??x)"‘ehﬁﬁz (y—4mx) Ans.
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Example 32 : Solve (

AND q / 83
PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR IN p q

2.6 PARTICULAR INTEGRAL
D + 3D'+ 4)2 Z= 0 1 i 1 e”’r+hv
em‘+ 1y e S
e . § EEm R F(a,b
Solution : The cquation is rewritten ag Case1: F(D-D ) ( )
Ix=2y
7 N D-D - 3)2 =€
[D*(—3D)'“(‘4)"}::0 Example 35: Solve (D-D 2)(
Hence the solution is

The complementary solution is

z=ey (y- 3x)+ xe g ()

b (340) 468+
(Y= 3x) Ans.
0 1 Ix-2y
Example 33 . Solve r+2s+2s+z+2p+2q+2=0 | . 1 ; 3](33-'——“ =—6—e
. ~ : e = - {9}
Solution : The equation js rewritten ag P‘I'—(D_D'— 2)(D-D'-3) [3 (-2) J[ (
(Dl +2D D'y 2 +2D+2D’+ 1)._ . Hence the complete solution is
1 3x-2y Ans.
2 2y ; 3x , y+x)+"‘€

i [(D+D') +2(D+D')+1]z:0 2= (y+x)+ed( 6

1
I in(ax + by
| = (D+D'+1)2320 1 : Sin(ax-i-by):F(—az,—ab,—bz)SIH(G\ )
Case 2 : F(D*,DD.D")
- P~y _,

Hence the solution jg

'—1)z=sin(x+2y
Example 36 : Solve (D+1)(D+D ~1)z =sin(x )
Solution : C.F.=¢*¢(y)+e'd (v - x)

1
D?+DD'+ D'-1

1
(D+1)(D+P=1)

in(x+2
sin(x+2J’)= sm(r+ y)
Pl.=

l sin(x+2y)=

4sin(x+ 2y)
T 1+(-2)+D-1 o

' D'+4
__f)_ii_sin(,x'+ 2y)=
N (D'3—16)

™
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1 —=

::—EO_(D +4)31r1(r+2y

[D sin ( 1')+4sin("'+2y)]
_H_l_[p_
SoL2cos(x+ 2y)+ 4sin(x + 21})]
Hence, the solution is,.. |
z:e“'r¢(y)+e" I 'i
. ¢3()‘-7\‘)——16[COS(.‘{‘+ )+2sm(1+21,

Case 3 .

1
mx”’yn =|:F(D,D'):|" .

m
X"y

Example 37 ; 5o [D* - p
+D +3D- 2] z

::x"ly
(DbD'+2)(D+D‘~1)

] SOllltiDn .

2=

1
=2/, 1
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Case 4. :

Example 38 : Solve (D-3D'- 2)’

:—%{1+_(3D+D D"+D*)+ ;(9D'B+DB+6DD'+GDZD')+é(9DZD') ..... j|x2_v

=- ;[\ v+~(31 +2xy—0+2y)+ i(0+2y+12x+12)+é(18)]

2 3 ) 9 1 3% 3y 21
:—%l:x‘y+%+_\y+y+%+3x+3+—:|——2|:\ y+T+Ay+7+3x+ 4}

4
Solution is
i . 1, 3x 3y 21
z=e ¢ (y+x)+e'd, ())—,1')—5(_\' y-{-—2-+ly+7+ 3§+?] Adis.
1 ax+by
F(D,D") [e ’ .¢(x,y):| of xandy

1 ax+by 5 ax+by 1 -
oo = F ey )

z=2¢" sin(y +3x)

Solution : A.E. is (D—3D'-2)" =0

CF.= ez"gﬁl (_1: + 31) + .\'ehtﬁz (y + 31)

P.l.= ———I——Ze “.sin(y+3x)

(D-3D-2)

2x

! —sin(y+3x)=2e"
(D+2—3D'2—2)

7sin(y +3x)

=2e” (D-3D')

- pF N S - )+3_ b
=2e"" X 2(D-3D)) sin(y +3x) (As denominator becomes zero)
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I
2. 2x 1 s . . :
=2x%e Ssin (»+3x) (Again differentiate)
=x"e*sin (y+ 3x)
Hence the complete solution 1s
z=e"¢,(y+ 3x)+ xel“qb2 (y+ 3x) +xe™ sin (v+ 3.\’) AL

Example 39 : Solve (D +DD'~—6D'2)z=xzsin(x+ )

Solution : (D2 +DD'—6D'2)z'=x2 Sin(x+y)

For complementary functjop
D2 L 12
(D*+DD—gp )=0 o (D~2D')(D+3D')
C.F.=¢l(y+2x)+¢2(

=0
y-—3x)

1

Pl = 3
—
D*+Dp_gpu* Sm(xw)

= Imaginary part of :
D? +DD'-gpn xz[COS(x+y)+isin(x+y)]
::" 1

‘_———______ (x4 p)
D*+pp_gpaxet™

=N e:y l 5
___——‘——____ ix
D™+ pi—g(r¥e

=i i(x+y)

e W )

+H(D+i)ivg™

—n f‘(,t+_p) 1
e 2
mx )
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i x+y)
=1y € l

— X
4 3iD D
+ T+

1

i
= X bt T

|
] s 31'.\‘_1_31J |l
= ! —[Cos(_r-f-.1')+I'Sill(—\'+.1l):l['\- H? 8 ‘
4

13

' 3x (x4 ) |
1 s 131 3__ -+ y) :lsitl(-"f")(""_*s' _L?CO*“’ e ‘
EZ sm(.\'fv)(_r —EJ—E.\'cos(.\ | A |

|
enee, the complete solution is |

13y 3x |
22 |=—cos(x+) |
¢ (y+2x)+¢ (;'—3.1')+:1£sin(.\‘+_1-')(.1 8] - (
i (y+ 2 (.

Ang,

EXERCISE 2.10

QlVe
the Ilowing equations.

) pr_pE-3D+3D)z=¢"
(Dz 2 N-=0 2. (
*2DD% p_op - 2p'): =
3 D:PD'3—3D+3DI)::0 i
(D“‘D' BT 4‘ (
‘I)(D+D'72)::€ erdr)
S' (D:-DDI—ZD)::COS(J-\ ;
(D+D')(D+D'k2):=sin(.1‘+3_1') 0.
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————————1° YON-LINEA
[ (DD+D-pr_)

)":13’ 8. (D+D'_1)(D+QD'_3}_—=4+3.r+6.-"

9 &z 7z 362 362
. a2 Az 343y ey
O B To g Wte 10. (D—D'Hl)(D-D'_z)_—ze“"r

11. ' ‘ g
D(D+D~1)(D+3D~—2)z=x‘~4xj.f+2y: 12. (D D'+2)(D D ) )
al +D'-)z=¢"" =Xy

ANSWER 2.10:
D e hlp)reny ooy

@ =0 oy L,
12
G 2= (xty)sey (r~x)~L e
12°¢
L YO
O) 2= (y-x)per(,_ 1
)+e (y x)+‘l—]—_’7[6cos(x+2y

O 2=00) vy, (y1 0, L
D= e ()
(8) Z=¢g ) (x hy)

2
X)——| XYy ¥

e Xy -
3l 2 6+?+l+‘2§iJ~xe“+2-"

(10) Z:E"tfl(y_,_x) 2

(11 = x
) z ¢1(y)+€ ¢2(I-—y)+ez.r¢3(3x-_y)+I[XE.

——2,2 2 7 5
3 = Y2y ‘Ex“+4xy+“2_rJ

2
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x—y

(12 2=y (x4 0)rey (x-y)-S

L ot o O o 50
| FYTYr SRy 4

2.7 MONGES METHOD (Non linear equation of the second order) :

Let the equtaon be R S Te = v (1)
’__5’3f oo o’f oS
Where R,S, T,V are function of x,y,z,pand q," = 3.2 gy’ o
P ;. O 4 rdv+sdy (2)
we have dp =é;d~‘ * 3 )
oq aqd.—sdrﬂdy .(3)
dg =—dx+—dy =St
and =%, y
dp—sd}’ and 1= dq — sdx
From (2) ang (3), we have "t i dy

PUtting the value ofrand t in (1), we get

—sdv d —de ==
R(dp ‘saﬁJ+Ss+T[i___J—V

(/.1' (b)
)= (4
2 v+ Tde’ =0 (
B Rdpdy + T dg dx —V dxdy *S(Rdl" ~Sdvdy+ )
Eqpias: . |
qUatlon (4) 1S Satisﬁed if (5)
- V ({Ad}’ =0

Rdpdy +T dqdx ©

Rdy* —Sdxdy+ 7dx’ =0

. A . ns.
Equatlons (5) and (6) are called MODgE S equatio

tions
Nce (6) can be factorised into two €qu&

0 and dy =M= !

dy —mdx = relation

d be, we may also use the

: [fnee
Ow Combine g, mdx =0 and equation (5)-




o
M (‘C’y:z, = .
between U ang v P-4)=a and V(xy,z, p,q)=b then we get relai”
aiis "= h(w)
quation (7) is ﬁll'ther iﬂtegrated b (7)

dp — g4
' _‘—‘—-—.____ —_—
= 3 and ¢ — 99~ sdy
Putt; ’
Ing these valyes of rand t i
r= qzt We
. We get
dp ~ sq
'y
dc a @2}@5
Ly
or
a’picz'yﬁaza’xa’q—S(o:‘iy2 *d 2)
TaQidxt)
. =0
us, the Monge’s Cquationg ar
e
dpdy o dxa’g =(
a’y2~a2dx2=0 o
(2) canbe Tesolved jpg fa :
Ctorg
dy ~ady 0
and
Y+ qgy _ 0 .
- .
Mbining (3) yyith (1) we N
get
dp(ady) - 4
)-a e dg < OF dp - g
Tadg =
..(5)
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(3) and (5) on integration gives respectively

y—ax=4

andp—aq:B}ﬁp—aq:ﬂ(y_ax) ..(6)

Similarly combining (4) and (1)

p+aq:f2(y+ax) (7

Adding and subtracting (6) and (7), we get L
|

P=[hi(y-a)+ fi(y+ax)] a=5 L flr+a)-A0=a)] |

a ]
Substituting these vales in dz = pdx +4dy

o= A=) (e ) g LA+ )AL=

1 ;
- —adx - ax ;
dz =-1—(dy+adr)ﬁ(y+a") 2a(dy adv) /(v -ax) |
2a (
1 . f
Integrating z—_—_l—gﬁl (y+m¥)—‘é;¢z(y m)
2a
Ans.
N z=E(y+ﬂx)+ﬂ(v"“"x)
am |
ple 41:Solv@ prsficant x+ptanx:0 ,
Solye |
llltl()n :  in dp —_gdy gt M ‘I
= and t= dy |
Puty; . et |
Hiting for r and t in the given equation, We g |
M dq~sdxcoszx+ptanx:0 |
dx dy |
N dxtcos’ Xt pdrdytant =l

dpdy - sdy® — dxdqeos’ X5
: ):0

,s(dyz —dx cos X

dpdy — dx dg cos’ x+ pdvdytant
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Monge’s equations are 2 1

dpdy - dxdgcos? pdxdytanx = )

il 1)
ay’ —ay? cos’ x=()
N el 2)
9 (2) is factorigeq (dv + dxcos x)( gy — dxcosx) =
dyhcb:cosxz()
s8]
dy-l—dxcosxzo
Integrating (3)and 4), we get N
Y=sinx= 4
)
Vtsiny=p (
Combmng (3)and (1 ), we get -
dp dg cosx+ptanxdx 0
or
(dpsecx+psecxtanxdx) d
. ) g::O
Integratlng Pseex—g - p
Combing (5) 4 (7), we haye v
PBEC K~
) | x q*f;(y*sinx)
Combing (6) and (7), we get -
Psegyy .
4= f i
o S " 2 (y+ Sin x) (9)
1
p‘ECOSx[f;(J’=Sinx)+f (
| 5 y+smx)] andq=l[f :
Puting for , and q 2 Z(J’HIMJ“fu(J’_SiM)J
R

| or :de-}.qdy
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1 . .
dz= %cosx[fi‘ (y—sinx)+ £, (y+ sin.t):ldx+§[ﬂ (y+sinx)— £ (y—sin r)] dy
1 . i
dz = Elfz (v +sinx)[dv+cosxdx] _Efl (y—sinx)[dy - cosxdx]

1 : ) —sinx
Integrating we get, ;:7}73 (_1s+smx)+F](} sinx)  Ans.

s

Examp]e 42 : Solve  r+ (a+b)s+abt=xy

Solution : We have

sl 1)
r+(a+b)s+abt=xy
Now dp=rdx+sdy and dq= sdv-+1dy
. ip — sdy — sl
- i SRy Ll and = ____dq =
dx dy
Putting these values of rand t in (1), we g€t
d "de =V
dp—sdy T =y
T+(a+b).§‘+ﬂb— dy
)
2 _(g+b)dvdy+abds }
or {dp dv + abdg dx __1-_1’(2'.\' (il’} -s{dy ((1+ )
Monge 's subsidiary equations are .2
dpdy +ab dg dx - xy dvdy =0 3)
A dy* ~(a+b)dxdy+abd x*=0
T : - o equations
he “quation (3) resolves in to the two &4 ..(4)
dv—bdx =0 il 3)
and

dv—ady =0

Frop, (4), we get y—bx=4




dp+adg-;9,dx=0

or dp+adq-x(A+bx)dr:0

A—x*=p

Integratmg, P+ag- b.-%)f _ ;—

1 1
P+aq—§b.x3 _E(y__bx)xz :fz(}’—b,r)

1 2
or Ptag+—py? 5 y-fl(y“bx) (6)
ISanintermegiate integray, 5 being ap arbitary functiop
Similarly frop, (2)and (5), we find another intennedlate Integrating
L
p+bq+gax Bk y‘—'fz(y-ax) (7)
When £, isan arbitary functiop
Solving (6) and (7) forp and q, we get
p=—1—x2y~l(a+b) 1y ]
-~ X
e aﬁb{afz(y“ax)‘bﬁ(y~bx)}
| |
and SeX e
=x +aﬁb{ﬁ(y—bx)-f2(yﬁax)}
Subst1tut1ng these
Valueg fpang ,in
dz—Pqudy, We get
dZ————xzydx+ 3 1
2 et dv-2 a+p) 3 ]
6 )xdx*;:-[;{aﬂ(%ax)hbﬁ(yb-XJ}dx
1
+

;:z{ﬁ (J’~b}c)__f2 (J"ax)}dy
Oor

/ 95
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I .
dz = 1(3.\': vy +_r"(1fr) ——(a+b)x'dv+
6% 6

1
(b-a)

Interating
l —ax)-¢, (y-bx)}
] l K , y {D.) |
zzg,'3_1r—£((:+!J).\ +b—ﬂ{¢-(
:—b.'{)
| : 1 s i '1)—{1,‘(')+W|()
O z=xy—(a+b)x

ion (1).
Which is the complete integral of equation (1)

1+p)t=0
Example43:Solve (1+q) r=2(1+p+q+pg)s+(
Sol“tion : We have

22‘:0
(1+g)’ ;-—2(1+p+q+PfI)5+(l+p)

AISO, we have

- tdy
dp = rdx + sdy and dg=sdx+1d)

; dq —sdx
SoF= dp - sdy and t= T
dx

' we get
Purting these values ofrand tin(1),

qu—sdxzo
» g R
2dp—sdy 1+p+q+pq)5+(1 ?) dy
(T+q) 22 -2

dx

Or

Paxtt=0
dy+(1+p) }
P iy e2(1+p) 1+ )

2 2 - 1+q) &
{(]+q)hdpd_']f+(1+p) a’qa’x} S{(

MOnge’S Subsidary equations are (2]

. =0
(14q) dpdy+(1+ p*)dg .0

angd

2 .20
)zird"“’(”p) =

(l+g) @2 +2(1+ p)(1+9

[f (y—a)(dy—adr)—fl(y—bx)(dy—bdr)]

"
|
|
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l+q)dy-i~(]+p)dx}2 =0
or (1+q)dy+(l+p)cbc=0

The equation (3) gives {(

)
or cix+dy+pcbc+qdy=0
or dx+dy+dz = [ dz = pd.r+qc{v] ()
Integrating, x+ Y+z=gq
From (2) and (4), we get
(l+q)dp-—(l+p)dq =0
dp _ dg
or r—k—!; - l+g
Integrating, we get (1+p):(1+q)b :(0)
From (5) and (6) , we have
(1+P)=(1+QJf(x+y+z) (7)
Whichis an Intermediate integra), £ being ap arbitray function 5
g tt ;
The differentia] €quation Obtained iy, the aboye illterlnedlate integral (7) can be Wit
P qf(x+y+z)-_--]+f(x+y+z)
Lagrangz;s auxillary €quations fo; this dﬁferential €quations gy
1 -f(x+y+£2 =d +f(x+y+z)
Each funcs =Ztay+4;
nction \P
a’x+dy+dz = 0:>x+y+z =4
From the fipgs two me bers, we get
Y=-1(4)a
Y=—xf (4)+ 3
or y+xf(x+y+z)&¢(x+y+z)
Which j Complete ntegry) of “quation ( 1)
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EXERCISE 2.11 :

Solve
i r+(a+b)s+ab1=-’9’
2, yzr -2ys+t= ptoy

2 2 = npy—4gx
3. ):y(!—r)+(.'—y )(5_2) Pyt

2;‘:0
b (4qf r-2(1e prg e pa)s+(1+p)
3. t—rsec“‘y:than}’
6. (q+l)s:(p+l)t
7. (i'—s)y+(s—t)X+G'“P:0
ANSWER 2.11:
_b.r)
4 E(}}
1 X ;_a;()'f' 2
(1) 2=gx"y-(a+b)§+ﬁ(}
(2) Z:__y3 _yF.I (yz +2X)+F13(-V— +2l)
X
3y Z:W‘Fﬂ(xz‘l'yz)"”Fz[;J
4
K Z:F;(X-l-y-!-z)%—sz(x*y'kz)
(S ;
) Z:Fl(x—tany)Jer(HtanJ)
(6)
G E AT

)

Z*fi(x+y)+f2(x2_y2)

i 4
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02.

05,

03.

_Aa) c.f.:jq(y-:u)ﬂ;(

04.

b —

MULTIPLE CHOICE QUESTIONS

If pg=1is partial differentia] €quation thep solution is

(a)zzax-l).wc 1 l
P /(E) Z=ax+—y+c
a

(€) z=ax+ by

(b) z= ax+(a3 —l)

y+c

(d) 2=ax—-(cz!3 —l)y-f-c
oty G =x ey g
Y+2x)

(b) c.f.:fi(y+3x)+fz(y+2x)
©cf=f (v=3x)+ 1, (v-2x)

| (d) C.f.:f;(y.*.x)-}-f;(y"x)
Particulay itegral if th o (D? 4 ppy ~oD?), (

=X sip T+y) is
(a) Pl = 5 l i

D* + DD 57 ¥ sin (x+y) (b) PJ - 1 X’
Pl = ]
(c) D'~ ppy —6p7~’ sin(x+y) (d) All the b
above
Which of the following Monge:g equat;
ion
(a) dedy#—qudxanxf V=) (b)
Rd 2 _ 2 =

(C)Bothaandb e

(d) a2 +Sdxdy =

Dq / 99
PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR IN p AND q

-p=0is
06.  Solution of the equation (r-x)y+(s-t)x+g-p

o (b) ==, (x4 )+ (5 +57)
@) 2=/ (x+)= £ (v -»?)
d) All of these
(c)zzf](x—y)-Ffz(x*'YJ (d)
07.  Solution of g+xp = p? is,..
1 2 -2y
( ) 1. ey (b) Z=a)’e‘-‘_.5a e +b
A) z=axe™ ——g'e™
* 2
fthese
i 1 2 2y (d)AHO
(€) z=axe’ toa'e” +b
08, . _ is,..
Solution of \/;h/a—xﬂ’ ’ 2 a) +b
(@) ; (b) 3z=(x+a) +(r-
— a-73z:(x+a)3+(_v—a) +b
fthese
(d)Allo
(c) 3z:(x+a)]—(y“'a)3_b
09, ;
Solution of , _ pi+q 18 1 az)=(-‘f—ay*t’?)1
(b) 4z{1
(a) 42(1+c~.:2)=(x+ay+5')2
(¢ None
(c) 4z(1~a’*):(,1c+ary—‘b)2
19, S
Olutigy of p2 1 4% =1 is, ) y+c
o ) z=a+(1-0)
(a-) Z:ax+ (1 az)
’ o y+c
(d)NOIlc
(c) 2=x+(1—a2)y+c . correct option
1 he following
. &z . 0Z_0 chooset
“Quatiop q, f T ey Ty

g1 D
(b) am+ &M T

2 pqgm—a =
(d) aom 1




y+2
(©) 2= £ (b) 2= fi(y+2x)+ 1, (y+22)
r(}’h?.x)-pf; ()f—Zx) 18.
2 (d) 2= £, (3= 2x) + xf; (y-20)
- Th
€ axuilary €quatiop of __“2_6_32_ s
(@) oty 7= s
M —2m+3 0
(c) m2+2m+]:O (b) :n2—2m+1=0 19
4. g
The Solutioin of (D ~3pepy v2pe] (d) None of these
D|2
=0 3
@) 7 is
: ﬁ(y)+£(y+x)+£(y+2x)
= b
()z f()’)+f2(y+x)+f(y 2) ()2-—f1(J”)+f2(y+x)
IV Tax
d) 2=
15. " The ayy ()Z“fmy)+ﬁ(y~x)+ﬁ(y+zﬂ
Axy equatlon 2 0%z a2
f AL, 8% 20),
(a) 2mz+5m+2_ Xoy & =0 is
(©) 2,2
16 e " 2 —5m_5 -0
+  Pa 3
rtlcularmtegral f(Dﬂﬂ)Z ( )Allthe abo
6“23’ +4D '!)Z = p¥+2y iS
- 2,
Tty b —e—:ii
95 A
U Parg ) %;
‘Ular ingegyy) of Oz s o 2,
At i
ey ) 5;?6+6-5)"_§= e is
(a) e sans
(b) £
63

(a) 2=f;(y+2x)+xf2(

—PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR IN p AND q / 101

T

i Ix+2y

e
c
© % @ 5 :
ir, .‘" ré- ;:i
Symboli o T F ——-—azz —sinxcos2y js =l > [f
ymbolic form of the equation ok axdy L\\’ |
\Q_:'L,_‘;:‘h:_f o
2 ! 1 = ﬁy
() (D2 +DD')z=sinxc052_v (b) (D'—DD )z=s1nxc052y S

(c) (Dz -DD ')2 =—sinxcos2y (d) None of the above

The partial differential equation form z =(a+ x) +yis
<8195 |

Z 1( oz 3
I =] BB L
(a) z:E[%Z} +y (b) 2 4(6}»} +y |
X 1

: oz ’ ‘
© :(2_] by @ [5;} i |

X

The solution of xp + yq =1z i8,
(a )f(x,y) =(

(©) F(w,yz)=0

The Solution p+g=z is )
1, ylogz) =0
(@) f(x+y,y+logz):0 R
None of these
(c) f(x (d) |
~»,y—logz)=0 |
The Solution of (y-z)p+(z-%)1=*77 .
(b) f(x2+y2+22)=xyz

(a)f(x+y+z):n,z ? 2
=I2+y-+z

(d) f(x+y+ z)

(C) f(xZ +y2 -i-zz,xzyzzz):o




24,

25,

26.

27,

(a)z A )+xf2( )

)42 () ®) z=(1+x4x%) /()
- ©z=fi(x x)+ 3, (x *)+ 51, (x)

(d) Z=(l+y+y2)f(x)

2
0?
The solutiop fé-_i z

x Byl
(@) z= f(y+x)+f( ) (b)z:ﬁ(y+x)+fz(y—15)
(c)z=f2(y+x)+f2(y~x) (d)zhf(xz—yz)
Particulay ; = .
rticular integyy; of (2p 3DpYy )z <oz s,
P 1
(b) 5_e_.v.f+-2y

X
(C) _‘___ex+2y 2

2 (d) _'g_en-zy
Particylay integry) of (D2 - D'z)

Z‘—:CDS(x+y) is
(a) ‘ZJECOS(x.f.y)

(C) XCOS(x + }’)

(d) Esin(x+y)
Theco lt i ¢

Mmplete jp egraj o P "

@ TS (Inayy

(c) 2

:ay+([na)y+c

/&()/Z (y- 3x)+xf, (v -3

AND q / 103
-LINEAR IN p
RENTIAL EQUATIONS NON-L

E

PARTIAL DIFF

2.3 =] iS,-
28.  The complete integral of p’q

-4

(b).::a,‘c+a§y+c

(a) z=ax+aly+c

2

(d) z=ax—a’y+c
(c) z=ax—a5y+c

-0 is
29, The solution of , + 6s+9t=0 15,

)=ty (v =3%)
7= |(y+3'1) /2
(a)zzf](y—:’)x)—kfz(y—h') (b) ¥

(d) z= 1, (y- 3x) -2 (v + 3x)
x) z

S)
UESTION
(MULTIPLE CHOICE Q

Y
ANSWER KE

05.(0  06.()

04.(a) 12. (a)
01.(b) 02.(a) 0.0 10. (a) L. 18. (b)
07.(a) 08.(a) 05 (&) 16.(a) 7. (& 24. (b)
13.(by 14.(a) 5. 7
19.(a) 20.(b) 25 ) 28.(2) B
25.(¢) 26.(d) B .




The fO]lowjng types of quations are 8enerally used

(1) One-dimensional heat flow ia_”i =c? 0’u
dt 5’;_
(iii) Two-dimensional flow _Q:_u_ . 0%u _
O0x? 5}3 -
(iii ) Wave €quation ?_Z_Li <2 Pu
or " 57
™) Ragio €quationg -ov 191
Ox _a_t_’ -
32 METHOD OFSEp

les.
solve —~_,du
B Tgp e Cre 5 ( )=6 ¢

. 0 0
Solutj oy 2

on Ox ‘é;—‘Fl{

Let U= X(x).r(z)
here x 1 functjop ofx Yang
v d

(1)

(2

(b)

LEMS / 105
TICAL PROB

ERENTIAL EQUATIONS IN PRAC

PARTIAL DIFF

o(XT) 8

=2—(XT)+XT
ox ot
rT—E:Z%H:c(say)
' 0

TdX—2X§1+X.T or T.X'=2XT+XT 5%
;x__ dt
X' ldX_Cmd_X_:cdx
L. =
X [6¢) X dx

_X_=ea
a

| T =lle1) ot =273
%H:C OT?=5(C ) or T

T a1t
! +logh or logb 7
Onintegration IOgTz-z-(c—-l)t

Le-1yr
T e 2
or T_.

b

or T =be

in(2) we have
Putting the value of X and T in (

L=y

et -(3)

,:-_\'4%{["[)’
or U= (lb e

_ bear

-3x
=be .
=0) nd c=

e abe™ =6¢€ .

1 3)’
P and ¢ in
utting the value of ab

3‘.1,.].[—3'[}’
AR
u= 6€




PARTIAL DIFFE
RENT
“AL EQUATIONS IN PRACTICAL PROBLEMS / [0
U= 66—31.'—21
<,._@ i Which is the required solution
S Ple2: Use the .
metho
d ofseparatioy, Of variables t g0 h
Solvet '
szﬁﬁav o
o 3
gven that ,, _
v=0 what t > o as we]|
> Wy~ g
. - 8t x=0 and ,—;
' 5,
Letus assume that ,, _ XT wh .
= ere X is 4 fu
nct
ivﬁXdT ‘N ofx only and T that oft only
S ot o and Oy ___d"X
ubstitutin =
g these valy axz |
e “
(1) € get )
x94T a4y
s
Let each side of (2) be €qua]
al t
4 Constap (~p2)
6i 1 a7
el dx
T d X g7 =—p?
5 o)
T g =p
dr ~ P o T,
i L - o L
and < -‘3’_2:_’(_ ) | -
X gy ==p? \de
Solvin ) v
g3 wor
)and (4) w haye ' -

__PARTIAL DIFFERENTIAL EQUATIONS IN PRACTICAL PROBLEMS / 107

X =C,cos px+C,sin px
v= C,"’:’ (C, cos px +C,sin px) .(5)

Putting x=0, v=0, in(5), we get

0=Ce""C, ~.C, =0, since C, #0

On putting the value of C, in(5), we get

sze"P2¢C3 sinpx X =],v=0 in(6) we get

0=Ce™"", Cysinpl

Since C, cannot be zero

nw

i . =% n isanyinteger.
<. 8in pl =0 =sinnmw ,_p_l,nlsany g

On putting the value of p in (6) it becomes

ﬂi’.’i nnwx

T .
v= Cl C3e ! s l

Hence o bne:"—;{‘-'i in f_? b, =CC; i
This equation satisfies the given condition for all integral values of n. Hence taking
"=0,2,3, . themost general solution is
= ; be
Usillg the p, EXECISE 31 tionofthe following equations
thod of seapration of variables find the SO
1‘ ou Z@iifu:z;g'” whent=0

2.'5;+u ot




PAR

ElHd U= e‘S_‘.. When e 0

o ax~3u“3e ~e™ aty=g

10, 2£_%%u

] "“—'——-

Ox?
12 —a-—u.___zau

13. ——_z___zaz B
4. v,

az
16. — Y _0u

17. ng Oy

TIAL Dy
FFERENTIAT, EQUATIONS 1N PRACTICAL PROBL Ems /115
Ou oy
3. 4

3. 3—

ou _
T lf“(x,O):

62
15, 1691 _
oy “———zfu(xo) #(5-%)

ax+2%~o u(x, 0)=4
8"110(“(1 0)= 4\"2

x2(25"x2)

82

PARTIAL DIFFERENTIAL EQUATIONS IN PRACTICAL PROBLEMS / 109

10.

12,

13,

15,

l6.

33
N

.

4 u= 3e£—x _ ez:—Sx
2x-5y ;
u=e ]
24yl 4k(x-y)
W =g}y 6. u=ce
] _rt
2 R :
: W = —-X)e
o) . ums{a

1
s 1 Bt poy S g &
u=2:ce””forngsi,u:Z(l'x)e for 2

2 2 xy
11 u:x'(25—-x )e
usinzrx.e*
U= e“’r_s,"
p) x4 ply _xgr-pl(x+¥)
Z:C]e[h— [l+{)}xw ) ze[] q p](
o x)
X+ Cy sin p.
" “‘(1 x)cos pt + c, sin pt(c; COS P

2

Px sin——*px]
= ot ¢ cos— Ty
“=xh2(5 - x)cos pt +c,sin pt| ¢, C057

1/2(1-1)

= AE
:1. V2x s 1 i ~t 8’3" 17 U
u 4(e " b)‘i(‘" i )
TRING : _
EQUATI()N OF VIBRATINGS ¢ ime. The wave equation

: at any
“ybe the displacement at the point 7 (%Y )

)] 52}’
Oy _ 2=
NI i B

ey ot
2
e

jon
e Obtain the solution of the waVe

52y 52)’
ot ax

gy
“Method of scapartion of variables-




2 2
Solution ; izi =2y
ot 0x?
Let y= xp Where X g function oy onlyand Tig 5 function oft only.
Oy dT
Repdl il 2X X
Ox dx
Since T ang Xare functiong of aSingle variap]e only
%y Oy ax
or " n nd o T gm
Substituting these valyeg in the given CUqation, v get
| d’r 2
X = Y= ~—-._.___d X
ar =C dx?
By SCparating the Variables, We get
d’T g2y
—f}t_z_ dx*
CF 5 (say)
(Each side is cop ant, singe the v,
bles x and y are independent)
a’r -
dt ¢ and fo ~kX =0
AUXIltary ®Quationg 4y,
L W 0 or
M=t+c
Case 1, Ifrsy \[Eand il e
T= C!ECJEI 3 Cze-C’\{ﬂ
X = 3BCJR:" 46"':"/;::

ZmMP .V:'(CSCOSC\/J_IC_I'i'CE,SinC‘ﬁEt)X(

111
AL PROBLEMS /
TIAL DIFFERENTIAL EQUATIONS IN PRACTIC

PAR

Case2:  1fy<o
T =g cos Ckt +C; sin C\/kt

X=C cosCx/Ex+CSsinC«/1;x
— ¥

Cage 3 . Ifr=o
T=Cg+C,

X =Cx+C,

dealing with
i blems. Here we are

depending upon the particular pro

These are three cases de D

wave motion (k< 0)

=TX
y in+ Ans.
C cosJkx + Cysin kx)

7

uation
EXW * Find the solution ofthe wave €4

2 5 o°
d G2 4
oo ) and=0 when x=0
S when x=
“ch that Y =Pocog pt,(Po is aconstant) wld)
2
Sulution . o'y - -6_)?/_
. E[-z— ax._

. 3 .
fi Solution is as given in Example

i JEX)
c, S
y—(C COS\/E[+C7 Sincﬁt)(% COSJ}C'X‘T‘ 4
=(¢, :

Pyt

Y=0, when x=0

- C\
0 f e kI)C3 =G




PARTIAL DIFFERENTIAL EQUATIONS

y=(cl cosc\/l?ch sincx/l?t)

Quating the Coefficients o f sinand ¢og on

both sides
x £
b=, qsxm/l?l, e a0
sinv/f /
~G¢singg g =B, =
A peefi =L
[
(3) becomes Y= & Cos ptsin £ b
sin+/k
P,
Y=-—T0 €0 ptsin £ .
Sin f c Ans.
E@‘ﬁi’s *Astring g strt s st
Ched apqg fastene to twyq Pointg | apart. Motion 1S 5
dlSplaCmg he strip, £
gmtheformy;-a in X ime
how hat the displace o 7 from Which j isreleasedatat {a’i‘
Ment of any Poin g¢ disty

=G ¢ cose/iy sin~/r + a

/ 112
IN PRACTICAL PROBLEMS / =~

& sina

> €, sin c\/f?tsin ki

is
—
e x from one end at tim

ed b

e

S / 113
CAL PROBLEM
DIFFERENTIAL EQUATIONS IN PRACTI

_PARTIAL

i all time,
As the end points of the string are fixed, for

-(2)
»(0.1)=0

and y(4t)=0

..(4)
(.@J =0
Ot /10
el )
,.(,C())zasin%£
Also 1%

iti ince the
ditions. Since t
¢ boundary con
tI)lz)t‘l/n of (1) is of the form

«{6)

iect to thea
Now we have to solve OF Su?fire theso
Vibration ofthe string is periodic, ther

C i Cpt)
t+C,sin

( f) (C COpr+Cqsinpx)(C3cos p

y X, )= l ,

)=0

; t
C,sinCp
By(;)_) ¥(0,¢)=C,(Cyco

i = (7
For this to pe true all time, C, =0 (

; t
coSCPtJr("Slncp )
Hen()e (C3

y(x,t)=C,sin px

cpt)]
' sinCP‘)“LC“(CpCOS g
-Lp
Q:C sinpx[c3(
and r "

=0
- c,Cp)=
ayJ =, sin px(Ci
B gy :
Y(4) (at y

= =0
GCG=0 ation ¥(%:1)

jivial sO
If C - 0 (7) will lead to the tr1
2TV,

: . =0
" the Only Possibility is that C, @
hus (7) becomes

{
in px coS CP
()= GG 07
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PARTIAL DIFFERENTIAL EQUATIONS IN PRACTICAL PR

14
PARTIAL DIFFERENTIA[ BLEMS /1 e e— —

EQUATIONS IN PRACTICAL PRO - Onputting ¢ =0 in(1). it reduces

If x=/ then y=0,0= C; C, sin plcos Cpt, forall t, ‘ . (2)

Since Cyand C, 0, we have sin p7 - ¢ % sl
ie _ nr
. r= I3 » Where n is an Integer.

Hence (8) reduces to,

y(xi)=c,c, sini’_’lﬁico nzC
!

Finally imposing the last Conditiop (5), weh

- in px
u =(c, cos pt +c,sin pt)c,sin p.

Onputting - 7 and w =0 in(2), we have

. v o1 T
0=(c, cos pt +c,sin pt)c,sin p
H=J,213’4
SIN prr = 0=sinnr

(9 P =nm or p=n

On Substituting the vaue ofp in (2) we get -(3)

ave
= (c'l cosnt + ¢, sin nf)"4 s
y('xao):C Csinnﬂ:x X
{ oD On differentiating (3), w.r.t. ‘t’ we get "
Which wil] pe satisfied by taking G ~a gng i e cosnt )¢, SN :
= +C,N
Hence the requireq SOlutm 9\- ( —C nsm nt
y(x,t) = asmﬂcosf_gﬁ On DUtting ili =, Fe 0 in(4) we have
B ! ! Proved. dt 0
Xample 6 : Tp,e Vibratiopg ofan elastic g, ‘ uatioﬂs | (c,sin nx)= €2%
1S governeq by the partial differential €4 | 0= ( en)(cy
Ou o*u !
ar* 3}? On plltting ¢, =0, (3) becomes
The length ofthe String jg 7 and g o0 il u =(c, cos nt) (¢ Sinn_\’) 05)
€ends 0&" g
ISrtutlal ieﬂectmll Su (x, 0) 2(3”1 X+g e ﬁxed The j nitial ve]OClty * Zervl ﬂﬂi gt sinnxy
in ;
g forts () 13x) . Fing the deflectiop, u(x,t) ofthe w=£ g v
a.?u az ‘ gi\/en . . .
Soluhon a l‘(x,O) :2(Sm_r+SIl]3.\)
P T
0 :
"PUting ; _ i (5) we have
= = (C Co
1OSpr 4 sin = ¢, SINAY
nputt!-n _ - # p )(Cz COSp +c4 Slnpx) (]) ££()|.’,0)—C1(4
YU =() m(l),We ) )
get W s +sin3x) =, ¢, sinm

48in 2y co5 5 = € ¢, S

)

e Se—




Ans.
iy
. initiallf
fixed enndpoints x=0 and y=/ 1S 10
Position gjye,, by y=y, sin3( z

e
. / J Ifit is relegeq from rest from this positio™
dlsplacement y (x

02 ’

a2y '
or? Ox?

ere th lmtlalcondt 1S ar
y(O,I)-Os y(!,!)"‘o
dy
=0 u r=, y(x,())._y sin® TX
/
Solutigy, (D is of the f;
(¢, cog i
2C0s py +czsmpx)(c3 €OS pet ¢ g; -
N p C, SIn pcl')
ow, y(O,t)EO Biveg
0=, (c
"\ *cos ey
Hene, (2) €Com - e o
28in py (.. i
l ( 3 €08 pey €, Sin pct) ”.(3)
»( )= Liveg
S, Sip pl( 3 Cog

PARTIAL DIFFERENTIAL EQUATIONS IN PRACTICAL

or p=ﬂwhere n=0,12,3,..
sinpl=0=sinnzr or pl=nm ]
i et
On oputting the value ofp in (3) we g
e (4
.nnfrx cscos'”;“w,,sm ! ]
_V=C28] —]'
nruct
. o BB, BEC : J
oy . nEx( Nl ¢ sin=——1+¢,
Now gj—zczsm ; 7
’ t

e
Sinee QX:O when ;=0 , we hav

ot
=0
| nﬂ.cxc ﬂ_c_ = C,
O:CZ sm ) !
Now (4) reduces to
ct
sin nﬁrcosfi;__
y:C263 :
(b.=c)
nre,
. cosS—
y=b,sin——=0057
(5)
nc
0 E_’T_icosirf
n=1
singf‘{J (given-)
Y _ 20 3sin—m 0 ]
Byt »(x 0)=y, SiHJ_Fdz{
m nax -0

b,si0
o (x,U)ZZ l

}I

1001 6) ang (7), we have




LE

. Tx . 27mx
y:.rﬁ,sm-——-w’)2 sin

X
+b, si 37x 3% sin ¥ _ ism }L
7 tosin=X T x Al .
[ [ 4 /
Cornapring the coefﬁcients, We have
bl = gi;("‘s t sy = _;1"_0_
4 ’ 4
and gJ) Otherg b’s are Zero
Hence (5) becomeg
_ X : Tt
= }1(33111 ir35(:05-(—7E —sin 27X cosgiE—J
4 / / / /
Ang
Xample g Olve the y,, Ve equatioy,
%y 2
= u
ot O

U=() When y _ 0 ang -

Ou -

T

- < T
-E}—;.:O W]?E” t=0 and u(I,O) =X, O<x
oluti, he solutioms of'th form
u = i
(x,r) ( ,cospx+czsmpx)( 3C08q +e, sin pt) -0
4 Sin g
Since u(0 )=
0=
G Mapt= . _,
They (1) eCop,
7] XH) < i
( ) Smpx(q Cos g €45ing py)
u(:r,t)~0

. or p=n
. =0—_*Sln”7r
; sin px
(¢, cosa pt+c,sina pt)=
: c,CO
0=c,sin pr(c,

+c, Sinﬂ’”)
=c,sinnx(c;cos an
Thus  u(x.r)=c,sin

il 3)
b,sinant)
innx(b cosant+0b,
u(x,t)=sinnx(h,
f)
i b.ncosan
O e —ab, nsinant + ab,
Now —=sinnx(-ab
ot
Ou =0 when t =0 wehave
AS _a?
b, =0 N
2 - e
0 =sin nx(ab,n) —
) =si (b cosant) or u(.l',f)‘ n .
u(x,1) = sin nx :
3 1 - cosant
G 0)= b sin nx ¢
xX,t)= ;
=y, we have
OII pllttlng u (J.', 0) =x, - )
2 X SINNAG
h=7)
L inx, where
x=3" b sinx, w
n=|
sin nxﬂ
2[ ( cosnx]_(l)(____}?_— 0
=—|y—| -
n
bia
i 2 .—l)”
=2 7 COSHJT:|=””(
T n
o S-
HenCe the required solution 18 ) N
L c0s
s (=) ginm e
-~ ! jon1s )
U (-wa) n=1 part" Mot d at tllne r _
Eka 0 pOintS I & s releas€
‘ .hp[e V1A String is stretched to tW ;

. h
whic
from
St

; ) T [_r—x:)
Ting Mo the from .V'A(

gisplacing the
0. Find the




PARTIAL DIFFERENTIAL EQUATIONS

displacement ofa i i
Ny point on the String at a distance ofx from one end at time

Solution : The vibration of the string is given by

~2 2
priale s
Ox e

Asthe end points of the string are fixed for 1l ti
all time,

¥(0,6)=0

; ..(4)
an
Solution Of(l) . (5)
1S y:
(s €08 px+te, Sinpx)(c co
Byu(2) y(0,r)=¢ TREP Y e sinpy) (6)
0=
& (C3COSsz+cqsincp)
Hence(ﬁ)b :
CCOmeg 6 =0
=CZSIpr(C
3COSCpt+ .
dy Gsine pr) G
A SO el
0 "2 px(~, PSincpryc
1€ PCosc py
By (4) L8 )
ot =0
=0
2510 px (o
Hence(7)].5r d ( 4CP) = o —
Cduced t " G4=0 since ¢, # 0
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.(8)

y=c,c, sinpxcoscpt
¥(1.0)=0
0 . % .
fPutting 1 _ ; in equation (8) we get

O=c,¢,sin plcoscpt oOr 0=sinp!

sinnz =sinpl or pl=nm:P

. ' ¢ ¢, =b,)
Putting p = Eiﬁ equation (8) becomes G
nre
" y=b sinf-ff-cos———[—"f
ofnand
; e mteg]‘al values
the ¢ We can have any number of solutions by taking dgir:
*Mplete solution will be the sum of these sOMO™
.9
}’(x,g) = i b sin n;:{rx _ m[z'ct
n=|
y(x,o) = Z b, sin m;lrx
n=]
.(10)
Ix _ x2 i [using (5 )]
= b sin BT X
= Sin 1
formofa Fourier Sin®
. the
o Itis ¢ ansion of /()
Serieg ®ar that (10) represents the eXp
consequently an
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! whenn is odd.

nax
COs——

/

..(2)

!
_.-_——"3‘
)

122

Whrepe S (u)

Where lf’ (v)

PARTIAY,
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il_ﬁ(avJ o o) [y
Eaimtrol el St 4 Bl [4 Ry
ot o\ or ou ov) \ou ov

&y .y &y
=& -~ '1 =i :\ +3 "'(3)
o’ ouov oV

Substituting the values, ? and 2_1_ from (2) and (3) in (1),we get
e /i3

a2 ,

Y * 2 3 P 2 A2,

S22y Oy oy 200 Ot L)
wov o) " \a oudv du ov

Integrating (4) w.rt. v, we get % = /(1)

] o ; 1t ‘v’ we get
1S constant in resepct V. Agam Hltegratmg (5) W.

y =If(u)du+y1(v)

Is constant in respect 0fu
= d
,l’:¢(£l)+W(‘u’) Wilere ¢(ll)-'[f(u) »
(6
.V(X,f):¢(x+ct)+w(x,a)
. »
This i D’ Almberts solution of Wave equatlonS( ) i
. 4 ==
ditions y(x.0)= 7(x) and 5
11

To determine ¢,y let usapply initial ©©
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and ; _
ot t=0 n(7) we get §(x) V()
or i
\ ¢ (x):-.l/f;(x) or ¢(x)=W(X)+b
gain sybgt
lflltlilg y:f(x) and t = () in(ﬁ) we get
f(x)::¢ X
( )+'J/(x) or f(x)z[w(-’f)+b:]+y/(,1‘)
f(x)‘:‘ZI,U(x)_!_b
S0 that v (x)<l
) 2[f(x)‘“b]and¢(x)=i[f( ) ]
Onputtin 2 *)+b
gtheValu
€s of (x+ct) and y (x ) i
—c m(6): Weget
Mt 1[
IS f(x+ 1
2 ct)+b]+__[
f(x-— ) —
2 ct)-b]
‘y(x:t “—:-_l.. )
AILS. ) 2[f(x+0t)+f(x*ct)]
5 “Quationg O%u 2
x:;l- — = 26 u d
o T —=
dy? Under the o 0 &
Ou €onditions ,, —o when x%
ot ~ Whe
Ilt:.-O and u(x 0)
3 :x
Using the transg ) »0<x o 7
nof,  _
a2u 62 -—hx+ct aﬂd
y T C2_‘_u_ ) au 2-—x ct,s l
YA Ay, Plvethe fllowing
U x-_:())__
=f(x).
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05,

07.

Astring of length lis intially at rest in equilibrium position and each of its points is given
velocity

oy
[é‘] =bsin® 22
t =0 !

Find the displacement y(x,r).

. ) : the initial conditions
Find the solution ofthe equation of vibrating String oflength | atisying ¢

Y=f(x)whent=0and %=g(x) when 1 =0

2

It * 5 . . ‘a_f._y_ s az g:_%f_
1Sassumed that th equation of a vibrating string 52 P |
and x=115 intiially at rest 10 its

hofits points velocity Ax( = x)
any time L.

A tightly stretched string with fixed end points x= 0
“Quilibriym, position. Ifit is set vibrating by gIVing toeac

find the displacement of the string at any distnace ¥ o
h ends1 1 dis

fromoneendat

A tightly Stretched string of length / fasteneed at bot
Ofequilibrium by imprating ot each of its points and
W that the solution of the problem i

nrx

' T . D ¢cos
_23 f(x)sinﬁ-*-’“ir o
u(x,t)_T = ! i3 Hyatrcstinits
0 __ jginitid .
At s x=0 84X L int a veloot
eq g-h.tly Stretched string with fixed end poi ? xby giving eac
uilj Tlum position. If it is s€t yibratin
%
~ ; Cemetﬂ
{aﬂ’ =-03sin x - .04sin3x then findthe displ®

=

egsanypoB T
X

at 5 .
Y time t,

FinClt ou _ 2,@2{ which$
¢ Solution of the equation :97 R ¢

~0.u(1) =0, u(x,0)=9( 07




. 5
SIS Initjq] o
: e
ept at thyat @ uniffom temperat’’ ¢ the
at temperatyre, Prove !

P
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Solutigy, . .
on: Let the €quaion for the conduction of heat be

ou _ , & (1)

at o’

cu dT o' u d’X
S o M =T
ot =4 dt and ox’ dx’
Substityt; IT_ opd'X
tituting these valuesin (1), weget X=—"=¢ r P
Or _1_ dT 1 d*X (2)
AT dr X odi?
Let
Ca ; 2
chside be equl to a constant (-7 )
1 d4dr or %}T_+P262T:0 ~3)
T dr P ‘
1, dlfty_{_p;"{(’-’o .‘-(4)
_l_d X or "{'i‘l‘f
S X a? P
Olvip
8 (3)and (4) we have
sin p¥
T = —p:(--‘[ and X = C:l COS px+ CJ
— & (5
u=ce " (c,cos pr e sin )
W Putting x=0,u=0 in(5)
getﬁc 3 —ptrc Sinpx
187 Py, U= l€
es
A 62) = c,=0,¢# 0 (5)bec0"1 / =sinn?
gain Jt ¢ smPljsmp

Utt; ,
8=, u=0 in (6) we get = 7/~

. ntegel-
Hﬂ',n lsarl}’mt G

—_—
=

= Pl=ng or 2
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Hence (6) beco e C
mes U=c ! rx e
Thls - Sln—-?._—b a £ sin %X., b,-, "-’C|CE
€quation satisfieg the gj
n=] € given condit; ' 3
2,3,...... the oSt genera] solution EZIOHS et onn B2
uz:gl be ¢ sin— x
By initia] conditiong U=
U, when t=0
UO = E:I bn Sinﬂi
) : Proved

B
1)
Xample | i -..(
0the EIVen equatio, Was
2
2 1 Ou
X2 at
e
On compy:
Mparin
€(1) angq (2) we get i< L
us Solutigy of (1) js ’
*<le tos :
g 2598 Px e sin px)cle—l:'_2i [Us;i
| sin
Putting %0, 4 g (5) OfexamPle (10] 0
(3) we get
0=, 1C,e P"'Z
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(3) is reduced to

u =c, sin pxc, e
On putting » —; and , = ¢ in(4), we get

—_— 1 ',:
0=c,sin plce "

c;#0,¢ %0

[ sin p/ = O=sinnr or p= K;}

Now (4) is reduced to

,,-11'
nITX T

u=c c,sin e e

0 : :
M Putting ¢ = 0,u= sin? in (5) we get

SIn— = ¢, SN -

[Put C103 :C4]

®Quation will be satisifed if

n=1 andC4=1

Ongy.... ¢
DUttmg the values of ¢, andnin (5), we hav

E)‘ u =Sin££€ W
e, !
8000 ‘ The ends A and B of arod 20 cm
y 80“(? aul Stredy state prevails. Thet tempere
Oy, p Jre dis ribu
t'“n ; pect‘Vely Find the temperat
. pinther

t
long ha;{;the ends 2%

hu tion 1

1111t1a1 temperature distl‘lbutlo

..(4)

(5
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u=304 2

—x

5
20 le. u :3O+§x

and the fing) distributiop, (L.ein Steady state ) i

20 /
U=4) +—x=
20 X =40y ;
;
Togetuinth : n the*
© Intermedigte eri ing ti instatnt whe
temperatype Were changeg o0, reckoning time from the insta

We assumeq

fi
Where ,, (x) IS tah, rmrea
2 € ste - e |
. ady state ternperature distribution in the rod (Letenl tendj
su Ciently long time) apq ,, ' s .
02ero a5 ¢ Mcreageg 1 (1) ds the ransient temperature distributio
Thug ‘
(x)= 404 x
Now u, (
1\X%,1) sat :
) satisfie the One-dimengjo 1 heat-flow equation
C2 azu . aa
Ox? B;
Nce y ig Of'the £,
g o +
- Z(a, COskx + b, sin k) ek
U =40 t
Whep, X=( and 3 — 60 When x =20 , W€ &
a, ::0, k- EZE
20
Henee
U = 0 + x = ’
+ inhrx o=
Usingtheiniti ] ” Elb" SIrl52_6{6 (20) -
a Conditjo, le

AR 131
L PROBLEMS /

PARTIAL DIFFERENTIAL EQUATIONS IN PRACTICA

—RIAL DIF

nwx

3 .
. hm Zx-10=Xh sin
30+—3—.r=4O+.\'+Zh"sm%.1 or 2‘ 20
2

Hence

20

Putting this valye of b in(1)we get

Eap Ans.
2(_1)” . mrxe'[ 20] J
20, H———“ S50
u=40+x - n

;EXERCISE 33.

onin arod
the heat conductionin
n

hicharises
Solye the following boundary value o

Ou 9%, 1,t)=0
g — e i 0,1)=ulls
o1 =< g m(0r)=u(

u(x,0) =100

o
2 [ ’aﬂ:(?‘_a‘;;

ationl ot

De

tequ
. onal hea
te“Tline the solution of one-dimension

al conditiomn

) an d the lﬂltl

_0(r>0
§ ‘ : f)’-—-'Osﬂ(l’t)
| ubJeCt 10 the boudnary condition # (0
U bar. 2 4sin3mX
3 (x’ 0)< X,/ being the length ofthe onu=a s '
SOI

t1
ctiont
Ve the Non-homogenous heat cond

Suh: .
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130)=Sin27rx, u(O,t) = u(],[) =0

()u = 3sin ¥
I Whent~0fora11 O<x<;
() Find
Y the met d of bo un
Value prope SCPparation Ofvariables the solutiion U (x,¢) ofthe
W T
= ._'_‘—'—..
ot Ox? s 0, 0< <2
= U(2,1)=g
U(x0)<, .
(5) The ¢ - <x<2 dst“C |
“SPective o 310d30 ¢y have the: 0°Cam g |
t2
:educed to 600(3826?%8&& condji; & have thejr tempeature kept a dd
€

. is su.
Iy kept S0 wh;j 10D prevaj], The temperatureofthe end B 4%00. i
Mionin the o e € ENA A te

m is raised to
€ T0d ofi, t perature is
The gl '
Qation 2 _ 5, ot
% O "H33 refer jve !
u =u, Siﬂm Whenf X S to the conduction of heat along a bar, gl
Wlthout radiation " henx s verylarge. "’
Show that if 4 o a posltl
Constang then g . \/T ¢ sin(n ~&x) ,where A, g and n af
A 2
Nisnuggt .
od iy
and steady st fleﬂgth | hae: f
1 ate - hasijtg gt
- nd endsa o e’ 48
indits e ratltlon Prevails, g 50 B Mantainedat 0°C and 100°C 1 sfaiﬂ"d
Ureat 5 g; 11; SUddenly re gy g to 0°C and mﬂmfhef"
5, =¢ ‘6‘2‘; OmA 5 time t, solve the equation ©
X

MS / 133
RACTICAL PROBLE

P ATIONS IN PRAC

—ARTIAL DIFFERENTIAL EQU

8.

)}

Ou o’u d
Solve 8 2 : a under the condition

u'(0,6)=0 >0

u‘(rr,t):z()

u(x,0)=x2, O<x<rm metherodcaﬂ
l 00 thrOughF)ut'
Oandmﬂjntamed

(x) bethe

- tfl
. i< 5o thin that hea
Arodof length | has its lateral surface insulated ag?;zt the temperature
'grarded as one dimensional. Initially the g suddenly reduced €03
At t=0 the temperature at the left end of the rod is

st 100. Let u
) . mtau]ﬁd at
th“-‘reaﬁer at this value while the right end 1s ma

ime t.
: uent time %
t"ml)eratl.lrf: at point x in the rmod is any subseq (x) with initial and

: ru
s - ial equtaion 0
(1) Write down the appropriate pratial differentia
“ndary congitions,

iables and
ation of vara
; hod of separ
e i . Smg met
S&SOIVE the different equation (i) above

" n'r ’t
n — 7
50x , 100 & 1 P==exp— 32
u(x’t):50+ * n=l N tion.
" 'ﬁ"erential equa temperature
el
. u a
y s

Where a2 . . " d at
Jy maintaine
d subseq?™Y

: ial
18 the constant involved in the part

I
: is therma
Aunifery, rod of length a whose surfce ledto §=0

B : coole
=% At time =0 , one end is suddenly

mally 05

: _—
tempel'atUIe, the other end remains

() ¢

Th

i 1a (i) U(00)=U(")

mno
tha W O _ g? — . Assumitic

] . ar leng
¢ tern15"3rt'clture distributioninab

X ratia
Oang m is governed by e




10,

I1.

3.6

ANSWER 3.3:

A.ns. I[(x [J‘- 200 = (__l n+|
H "—-“——.__z N&)‘*—S]n Ny ﬁ‘:":"‘"'f_:
~Zp gt

T n=|
h
f

/

i _ joné
=C0s2x find the temperature distrubuti®”

(&

p?l‘auel direction to length .
to the plane of'the reacta’”

P
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ﬁzu A2
(l)becomes L O u
ox - ("?1.3

=0

(8 du
oS, O )
ox* oy

This is called Laplace equation in two dimensions-

)

2 v ]
o'u  fu

xample 13+

ox- Fn.ﬁz

Solve ==t == =0 whichsatisfies the ¢

onditions

u(0,y)= u(l,_l’) = H(LO) =0

. hmXx
and u(.r.a):sm—r
Sopyec 1)
utl()n: _(?j'_,{ a:ll (
l o 37"
; ) (2
u=X(x),Y(y)
Py
t 2 2
Mg the values of <% and O in(1) wehave
o v
X“Y-f-XY“:O
Or X yo ] (saY)
T -0
- el
Xro_ppx o X"P )
e
or y'-F

Y“:sz




+ <

u :C 1y
28In P Py
Onputtjng - *(cye? 4 )
“hu=
> We haye
=¢ S-
g lnptl((f,‘je‘hyc4 +e—’°)’)
G%0
or SIn p/ = = sin i
Pl
T
Now (6) begoy, or p_nr
[
G sm_’l’E_{ nxy
e
Onputtln 4€
U= and »
.(7) We by
~ G 8ip N x

)

..(6)

k)

Evs /15
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¢, +¢, =0 or ¢y =-C4

(7) becomes U =cycy8in %’E(ET —6’—'_] ~(8)

On Putting y=a and u = sinijlr—x in (8) , we get

nza —nta 1
sin 22X _ ¢,c. sin L] P L’T] ie. 66 = ﬂ
! 3 / el —#
Putting ¢: .
g this value in (8) we have
Ux .- h “Zy ~ngy i ,P]ﬂ,'y
SinZxel _ sinh—— Ans
e .
. NAX
! T’;LT‘_‘-E or u =sm————;jr—a‘
%5 g sinh 5 r
By ompar
am .o and 051008 C
Ple 14. < 10 cm wise 2t = licable
4:A Teactangular plate with insulated surfces 15 troducing an PP

10 itg y: .. Jenth wibtout i1
W : _ . lent
dth that jt may be considered infintie 1 0 is given by

Crr o
OL. Ifthe temperature along the short edge ¥

=20(10-x),5<x<1 short € geskeptat C
r
While € two long ed 0 and x=10 .aswellsth“3Othe
ong edges x =0 and +~— fihe plat
smllti e Steady the temperature atany point e (65) 8 tisfy the equation
On oint 7 X,
e Steady state , the temperature * (m) o (1
2 2
Ju du_
Th ox? ayz
"Poung o)
Ty conditions re,
f
u(0,y)=0 for all values © y ko)

u(10,y)=0 forall V&
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”(x,oo) 4 ______..-—/

=0 fora]| values of x 4
4 (x, 0) =20x 0
<x<5
=2
W three . 0(10“'\_)’5<x<10 )
POssib]e Solutiong of(1)
we
“=(Cem s ¢ -
Cper
- )(C3 COSP}"+-C4 Sin py) (6)
=( 5 COs
Px+C sin .
" 6 Pr)(C,e’-‘ + Cge"’-") A7
e F+Co)(C,y 4 C,) 8) |
Weh ) ) l
l;lljpr()b]em_ Se that SQ]ut 4 | ( : l]l
> . ) .
Y Possible Ution (6) o0 which jg Cconsistent with the phy sics Iz]f- L

“(x,y =
1 Cog
28in , L
BY(z) u(()’y) Px)(c}ep) +C4€*PJ') e (9)
1 (Cjepy + qu-p) ) 0
=0 for gy
C oy values ofy
( )I’educEst l
B (x’y)t 281n x(C
P
y(3) u(loay);: . 3€ 'y +C 5B 0)
zSInIOP(C 4 ) (1
set
Slnl()p 0 * 48-"’3’)__0 C )
2
Oto 10, _
satnSfytheCOHd P=nn or pnz
ltlgn Eieg
(4); o 10
I
C < Oas,

and (8
on : c :
5(7)de, of the)foilqlilnOt Satisty the condition (2),(3) 3%
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- The most general solution that satisfies (2), (3),& (4) is of th the form

u(x,y)= S b sinpxe™”

n=1

. nm
u(x,0)= % b,sinpx where P=7y

n=1

Pllttmg y=(
. . L _0and x=5and
This Tequires the expansion of u inf Fourier series i the interval x=0a”n

ﬁ-omxzsm _1.;_10
10

5 in pxdx
b, == 70rsinpx(ir+~12— 20(10’-")5'an
"0 T 10

3 10 - N
b =4J' xsinpx(ix‘-i-*’-i[ (10—.r)smpx
5
0

—cos xﬁ}(*l)(j};—ﬁﬂu

““““—-Jm)[—"’ﬂ“[(‘w[f

P

0
510 Si[l5P
. sp M+£ﬁg§’"+#—};’
:4{—50035P+§11;_;__:I+4[0— 7 g7
P
nw
:4_25in5Pf§i_r_l_5_ffJ ( ’TEJ
P2 P
M ni nr _ iqg'sin e
2sin5.— Slnlo-lo P‘Pﬂ__siﬂ'_z’ ﬂzﬂ'~
- n’n’ fjf—z- '
L 100 L ()80
R

b, :(2",1) r

Oy
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u(X,})):-S_Q_O.iE LZQH:_ . (2”"‘1)71')( _(2n-1)zy
o (2’1‘1)2 Sln—__H)__e = A |

a2 ~2
gu, ou "
o A=
ooy

Yand is equal t
SOIVe the q 0 2cos y when x =0
€quatio
! ; +u);v =0
u -
( ’y)hu(n’y)"ofor all y
“(x0)=x O<x<y
lim
P “( ¥)=0 O<x<p,
Solve the by,
Undary v,
€ prob)|, M Subject _
Ou_ o, the given conditions
5+
Ox? a? =0
O<x<ig 5
Sy<ow
u(0,y) <
y ( 3)’) =() ﬁ}l
for ally of
u (05))) = 0
u(xsoo) =(
4 S<x<y in0<x<5 (5,0)=20(10 2
) i Ul x - -
dthe so )¢ ,
ut
0< 10n OfLapIaCe, . o
xSa,Og_ySb ¢ Sequatl()nAz . efe’gl
14 :x(a _x) A o (0 Satlgfying the cop gi =0 Incrtesian coordinates in th afld
N¥<a nditions Y=0 on a,y”=
An Hlﬁnl x=0, x=4
t
. The brEdadthiSp élsbounded by e . ﬁﬂgld
P HS end s g Parallel edges and end at 118" 59

ain
edat g temperature u, at all poo
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Other edges are at zero temperature. Determine the temperature at any point of the plate

in the steady state,

. i - i h the same
T.he Points of trisection of a rightly stretched strng are pulled astfi; t}ilso;legleased e
distance on opposite sides of the position of equilibriumm aﬂfi thets ubfequent S
ot Derive an expression for the displacement of the strng at s

: Show that the mid point ofthe string always remais at rest. -

| - : ndedby the lne
The Steady state temperature distribution 1 2 thl{l plate ?:uuaﬁon.
=0, x= a,y=0and y=w 18 govemed by the partial differentia€d
' : itions
Obtajn the Steady state temperature distribution under the conditl
u I,OG) = O
u(x,0)=0 u(a,)’):O (
u(x,0)=x, o<x<all
e al2sxsa
&NSWE =a—Xx
] R34,
U= 2e7! cos y
2
U(x o
Y)= El b, sinnxe™ 3 b, sinnx
n=|
3
| u(x y) 800 ( l)le (2 . l)ﬂ-r _,ﬂ%ﬁ
) = o e n- £
ST L ———sin ————1—0"" &
n=| (2]’[ _ l)..
4 -
W« 8a2 L TX . Q’_’_t_l)/l
s | sin==sinh=")
zt L -—-—___M
" 241y (2n+1)
N a
1 sy sin 5xt :|




B

AR CO-ORDINATES :
u 14
\Fgamplels:s,olve —+10u

1 &%,
ror 2 06?

RO
ARTIAT, DIFFERENTIAL EQUATIONS I PRACTICAL P
B LAPLACE EQUATION IN PO,

ﬁu_erw)
and 5;‘— dr?
2 )z T R()LT
00 V)= o v
u g, u
Ing hevalue fg;—z—,g; nda . m(l)weget)
d?; »
"), d £
a3 (9)'“";,‘;]1(9)""1{(’”);@_0
2 d*p dR 2
. d
( dr2+r§?]T+R}5§‘0
rZ-‘-’i;H dR
dr e
dr 1 d*r sa
- _ ¥)
d’p
P2 dR
dr? +,.__;__ thO gi‘+hT:0
do?
Pyt Pasgt (Dz+h)T=O
(D(D-y), , hR<

41
S /
BLEM

(1)

-1 h
D4 hogop pstidh

/ 143

BLEMS f
AL PRO
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PARTIAL DIFFERE

--‘-\_____

D*~h=00r D=%h

o) V
| F)[ s(Vho)+e Si“(‘mgﬂ

= -Jh Cy cO

U= (C'w"'h +cyr '

Case 1: Ifh = k2

i
Sin(kg)]

. -“R)':C;cos("'f”)w4

)b S u *(Cu" +¢y7

(2) becomes w =

|
e, If =g

|
+0c,)
(2) becomes 1 = (cs +2¢,)+(cr

2
[ +(logf‘)ca][CT+ cs)
=] Cs

Q b )
aSE3: If h=-p?

-pu)

P +cpp€

e
( cos pz + € SINP

(2) becomes u = €

tions.
ible solu
Then there are three possib

siﬂ(ka)]
k -k )[63 005(!{6)4_64
u= (C|"- i

anS.
0)

C

u=(c; +c,logr)(er +

=(c, +¢

C]le
. 1gf‘)][
y { S(plog,.)+c1051n(])0 ,
=l ¢, co
E’fa;.]

Dl@lﬁ.
§

Jate ted
) uCtoI'p ] the S
* The diameter ofa Semlconici '
lll‘ltl the Semiconductor boundary jar plate © qure 8t
' . o lar
e tial q o, (r,0) be the steady
LCt o (p
t y
hee Uatioy,
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NIAL EQUATIONS IN prACTICAL pROBLEMS | 1¥ | _PARTIAL DIFFERENTIAL EQUATIONS IN PRACTICAL
pQu o oy, | , 5 |
ot 5 +5§7=0 N0 i u(r.0)= \_I b, r" sinnd
The boun .. . [
dﬂlycondltlons are ' Putting , = ;, and u =T in(5),wehave ‘
(1) N(",O):g e ' j'
@ F<a T=Y b a"sinnd i
2 u (rs ﬂ') = O n=1 |
0 : !
Sr<q By Fourier halfrange series, we get W
(m) u(a,g)_T p ’ “\
fo 5% 2, (zcosnd ] w
o conditions (j and ( pli® ba" == _[ Tsinngd0=2T(77 )y 07
)15 as g} ed meXamE? "’Ivg ha “—0as »_, 0 . Hence the appropl'jﬂte s0 T ;}
e .
: is even |
u =(c P b a" = when # 15€ |
la +Czr‘P)(c Cos pO : 2) l
Ptutﬁng u(r 0)-‘_ . ] P +C4 Sin p@) ( ‘ dd \I,‘
D=00) e bar =41 when 1 50 |
ni |
}
(2) 3 O (Cl” b )CJ e, = (3) 7 |
CComes 3= 4
[ = n
:> )" ”f[ a
Cne
u :(Clr!’ +o - ) becomes
Pun e ]
7)=0 n(3), e ; /a)’ (r/a) gin50+-
L : () 1] 10 g L 30+
Xp m 3
0= lfOf
(e & 7 e, si | RCISE 3.5 pich D opelt?
beco =hx t . ar lat€ atul |
mes o Utting e = Dp=y ) Qifcllfe Steady state temperature ina cnl‘cu!’ll PO ' ’ m tempe! ad b
=h i a .
ey A ®Tence at (°C and the other ha . eoumi® enc® cnper® re. Il
ey, Semj_.: g as 1S O grzer fehe pIAC
g 2 )C4 Sttt 1 Circylar plate of radisu a oriS g teral©
howe, ” @ “0)< qary G i
b “=0 Whey Stegy 0 (7 =6) while the boun | ofte plate
beCO =0, 0 =c ySt ' . r 0
TS u=c ¢ Sinp g 2 L oy ins;l;e temperature distribution u
€ my ate
8t genera] o, tio S d. tion
nOf(l) is ()] qua

Y e €
©the Steady-state temperatt’
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the following conditiong T(10,9 '

)=15cosg and T(20,0)=30sin6
ANSWER3.5:

m- AI]S H(f‘,g):SOEEQQ ,7 Iz 2n-] .
2 H Sin(27~1)9

H n=)

2. Ans H(}"Q)

I
8| &
~ s
)
il

.
Sin( 2; -1
sin(2r-1)g

a (211 -~ I)3
S T(ng) ’ 3
0= ro. 1(r
; .
= m9+—3—(;J Sin3@+ J
3.8
RANS
MISSION LINE EQUATIONS
2
eV
aE RO 0% '
ot » P 2 -
Ox? -37
r
. €calleq telegrapy, Cquatipng
Cre =
~Potentjg) .
Py '=current, “aPacitance,, I = indyctance
=g & V 2. | o
W, B 1cdi
5 o =LCS -
Example : ) are calleq radio €quations. ,
Ind the currentiand 1 ﬁerthb
Voltg
dsare sud ECvin transmisgjo,, line of length 7, seco™ /
den[ygrou e , Rﬂ}l
- ’ ! ‘ | t
e Negligip S that i(50) =, () K [ "ﬂ'] e
/
Solutig, gy 0?
T u
Ox C_é}‘z‘
Let Ll Where
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& X d’T
1y 2- - 3 ) say
T‘—_dj \ =LCY d f . dx :Lcr—f“; ==p
dx- dt- X

i
. » .ot the values of vand
Since the initial conditions suggest the valu

X =¢, cos px + ¢, sin px

ot

B et P Sl —~——

=, cos L(_“.:“” JLC
v=XT

[ pi (1)
.__[_)-—'f"-' sin—==
If V= (¢, +cos pu + ¢, sin px )| ¢; €08 JLe e

Whe g B4
I t=0,v=y, smT
(2
. ]z" = ) . - "
Vosin =2 _ (¢, cos px +c, sin px )¢y
Ne .
quatmg the coefficients, we get
Vs
d €6 =Vl |
o L al At
e, = 0= c, = 0
(1

pr
. t . o SIN—F=
“‘B]n TX lﬁ)COS ‘D -}-(1(.15” \[EE
N Ta

llen =0, ;= i, (C()nStElIli)

=0
f =
- v _ o when
0X ) B/ =0

are periodic functions.
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—=s5inZX[ p e Pt o _opt J (4)
NOW Py Sin ; (TL\EJ[HHMH-\TL\?‘H:(J COS\/L—C
O : Ov 0 =0
Nputting ;3—;“-:0 and ; - i (4) we get €0, =
(3)is reducedt,

Integrating (5)angd 6), we

S(x) ang F(z)

co =; _
hstapy = f

(%)
Hence PR Y \/‘;C—COS ‘?—si __7_1'_3__- Ans
!
EXERCigp 3 e
L btain .
tion of g, S
itable it eiegraph ®quatigp -a—:f =prcle faﬂ J
Potential frop, g $3%¢ Whey - v s a steady o
g 00 aloy, the [ Y8 VI the tipq and when there is a St
& heline of /1 Nitially 4 g the sending end is sudde
ANSWER 3 ¢
1 ; 2e i
e(’\’[) Ny “;l Zl isin i}’ﬁe?ﬁr

X Tt
V= v, Sln——cos

VLC
v TX Tt i (5)
e TS — = _ 9!
ox lvﬂcos ; COS\/-E 5
ov W omx Tt -1 ot (6)
h—z“_‘——-sm——sm—___
ot IJIc /

NLC ™ C 3%
get

: '
L E‘Vu\/gcosf%fsin———‘m +/(x)

NLc
=y, [C TX . nt
i vo\/;cos-—1—51nn—?‘_c_+ F(t)

=0
r =
. i 3 en
Must be Constant only, since ; i, wh

ART TIONS IN P
P TAL DIFFERENTIAL EQUATIO!
e
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CE QUESTION
MULTIPLE CHOl fems,
al heat flow prob
i jon
. dimens!
. d in one
L Ifthe engs x=0 and % =g 418 are ou(Lt) g, at 1=0
then the boundary conditions ou(0,1) 0. SL:“’= '
81:(0:) ou(L,r) t1=0 b)T allt
W =l g, B 00) , k) o
A ox aul0, !-0 6,1'
)%
au(O,t) Cu(L,r) 0. for allt ( a
—C o e
2 ( ) a)f O‘ Ox . iS g.iven bY i
"~ Onedimengional heat equation ou_p 0t
, i b) = 7" &’
(a) L _ 2 9u -G o
ot " A3 ou_ 01—
’ oM _ot—5 ox
_— a\'
(¢) Lo, o 0 @
Ox* 57 =
3 y ,
" . - 7 a’”
he Waye €quation is given by o _ 2 Ex/
2 5 (b) ot '
— e o 4
Or? o U 25
—+C af-
( ) “u O’ (d) o
Ox? 0y ;
t flow
4 % psion .
he ¢ : §1+4=0is,.. e dime jon
qllatlon P &’ (b) Ozdl equatlo
“E‘?Two dimensional heat flow (AR
C Wave 2
§ €qQuation v . n flow
1 s s ]S ok , at at ] 8
Thee . q&_Ei,_a_’{_::Cat < ‘adloequns nﬂlhe ; asl“ﬁ :I
( Quatjop o ot o , ’(bﬂ;w'dhﬂe m [C sinﬁ
(2; Waye quation w @ G
§, One. 'Mmensional heat flo | du_gist” k0 +C sink]
d’u 19‘i+“‘:‘ 20" £)[C, €98
e solution of 27 T o0 ( ¢ G I
if h . " = !
~k* then solution is o] (D) hese
Q en so +C,sink?] —
u;h(cl"k +Cp_f‘k)[c.1 cosk )
—(2) U~

1 A’ ]
sin
(C]rk—C?_rk)[ ]COSk6 C.’
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f

(C) U= 1_9'\__ 30
L (d) None of these

DA] 9 g} + 10 )(C i . Th .
em )(Ci0+c ) etwo d i’ . o
(a)y= berts Solutjop lof 2) . imensional steady state heat flow equation in polar co-ordinates is.. |
“J '-‘-(-\',f) = ) the Way ""(d)A” [hc élb()vc (a) e (N} e 2 X . 2 |
© Sxsays g €equatiop jg 2l (b) o o, O |
Hott) Y=ci)) & 00 =t |
’ *f(_\.: ar ¢ \
= : . 82 .
hetEIEgraph )+»f(.\—-(! (b) _I"(-\‘.f):_/'(_\-+(-’)+-/-('1‘+’L‘!) (C) rli—l—‘.__}_{.“ (-_3” /’
2 “Quatiopg f, (d dt oy Tagr 0 (d) Allthese above |
(a) ?—;'—:RCOV or Otent] l ) }'(.\'J) = /( 1'—('/)+ /'(_\‘—‘L'nf) 17 #i
( cx~ 5;. a and Cul.rent is : ’ ) Solutio ("-“ (_‘.“ ‘I
! 10 )botha &% " of :E =R given u (0. v) =8¢ 3 [8yee 3 8195 w’;
| €p rtia] g; (b) i 5 (a) = : ol \:
| differap 7 = RC— =8e ' 1264 !
(a) al_]; ) el]tla] equat‘ cr ( ) Y Q s (b) u= h4 |
« o A% . " . . . ‘
&y €rse vibrations of string’ The Zener. P T |
(C) B 0 = Eral soluti . . ¢ = — () [Seeeseeeeerrt |
11 ar? :C‘:i-{ (b) o9 _ oy ution of the equation :-*"(:{‘” ‘
* In L o S ’&{), Ox .
is ensjgy, o “B) (€, cos et . |
{ay0 al €at flgy, d) Qu 2y v+ C, sin px)(C, cos pr + C,sin p{) |
~3 = C |
When g ;) ¢ along the normal to the™’ ( PX = C, sin px)(C, cos pt +C,sin pt)
(a itiong;, - St X —C, sin px)(C, cos pt =C sin p!
) o0, omsis edtogy (d)3 (d) Nop, R RS
dy Points / , city Wl ©
9 [;!?J <0 , apart, has an initial V¢’ 5, .
'to h i
14, Solus: (b) »(s )= Egeneral solufi ‘ IR Tty
Ution f oz £kt ution of the equation 53y
(b) u ::_1_9
; *=30
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21
. The
solution of 3:9%_. o
Ox —‘-5."'—'5 oo
\.f«(ﬁ)f(xs oy s 1S
y3 z) -------
yZ =)
© s (-"Sy 2)
’ = 0 ~
22, T (b) 1 ('\-5"1,:3):0
lutiop o 22
I 0]1 ()f_;‘__;-_:s. (d) ‘f‘(_\. 1‘1 - .
X ln(.\j:) is ’ ‘H) =0
.
2 Sln( ’
xy
)+ 400+ 1 (3)
(c 2 -
)=Ssin(n)., (b)~—sin
i H3)- 1 Lsin) ()60
5 The 2\)
Solut;
it tiop of g (d)hlaSin (x) ) ))
,'/}2.. ot axl: if Y v) =) (J’)’f?()
(a) (531 H(O t):u( )
n4n-x 32, 0 and s Sﬁ]
©) ~3sing u(x,0) = 5wn4ﬂr’39ﬂ
C) 531 ‘T-’Ce"?Bn H
n "
24, £ 47 xo 12 : ) (b) (5 S
e T ~32x%
lndhe n SINB7r x gl 2872 * +3sin 87rre'm’””)
€pe WI fupeg; ) (d)(S ;
(&)p Varigp 00 in sindz o3¢
riableg S then :‘ differey, ity ‘e —3sin gﬂxe—lz&rnzv')
(c )B Crentig) he diffe l
Oth (a) “Quatio cren “duation d o
01 and (b) * €quatio epends on mor® L
© ANSwy; b M is said to be...
- UL erential € atio
1 T 1
13-(d) 08 (a) 03, (a) Ip CHo (d) None
9'(21) 14.(a) 09 © 04 ICE QUES
20 1 (a) TIONS)
(a) 5. (a) 10. (a) 05. (b)
5 06. (¢)
- @ 6. @ 120
% 22, (a) 17. () .
-(a
24. (a)
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4
LA

4,1]
NTR
ODU
CTIO
N :

ful in integral ransform in engineering and

Th
a
place transorms is most us€
inear Or

Phys;
]Cal sci
lence. [t
ATS me " .
ain contributrus is inthe solution ofl dinary and Pﬂfﬁal

diff

e .

Tentig] equati
1018,

plied by the English

ational methods ap
engineering.

Thig
subj i
ject orlgnated from the oper
ctrical

Cne;
glneer
OliVe
T a7
Heaviside {1850-1925) 10 problems in ele
ac ed rigoub, whic

mtaicandl k
1916- 1917.1t

h was

nfy
Ity
Ys He 1a1 3
aviside’s treatment was unsyste
ichand carson

ed o
N'sound
mathematial footing by BromwIC
est intr0 duced by ™

W
as fy
Und tha
t Heavisi
eaviside’s operational calculusis®

4 %e 0 deﬁnl
te int
egrals called Laplace transforms

forms

1)
Dg
filllthn
acetIaIlS

L
 r()
oft. The? the Lap!

be
of a funct:
) nction oft defined forall positive ¥

s detion
ed by L{f(t)} is defined by
©)

Q) Lrpn=7
Copge.. (I)}=£ e f(1)dt

itig
ns
for the existence

he

La

| Place transf 5

(i) , ormof f(t) 1€ 3 S ()
s

l s Continuous

T

(it) 5=

ho
wey
er, be noted that the d




(I)

@

(3)

4)

(5)

(6)
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For example, L(l/\/r—) exists, through 1/ 1sinfinite at t=0.
4.3 TRANSFORMS OF BASIC FUNCTIONS
B ] .. .
Yusing definitio, gives the following formulae -
L(n<1
(1)=2 (s>0)
1
L{e")=_2
(#)=— (s>a)
L(sin L L
A (S ” 0)
L(cos oo N
s +q? (s>0)
L(sinh at) = -_2_‘1_2_
" —a
(.S' > l(l,)
L(cogp at) = 7—g—?
5°—q (.s'>,”|)

Proofs, 1z

)

= Ie—”.ld{ - e__“ o
0 T < y
Ky -—-_UPS)O
0 §

L(tn)¢ ge‘n.tndt :TQ‘P-[-‘?_JR dp
0 Ry 5 Onputting St = p

5 dp Dy

g ’if’l):—__,l andS>0
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\
(s-a)t ! I ot
> s>da
(3) L =[p " _ Ll ..-hr[ _ ¢ Z—_J/ i
(‘9 ) ;[c . d(—'_I'( ar=|— .s‘—Cf)“ s—a
a
(4 . . e " i ,ucOS(H) 5#:(_;7
) L(Sm“l’) =le " sinards = —:—(_‘ sinar— g 2
0 5

U L(Si“hfli)z jc* " sinhar dt =_I|'f’ ‘ [E:p:(___)d[
I a or S>la‘
.y 1 1 __——}f.?:?
=5[f1’ a “”(I'I—j(’ lwm‘h}:-i{:—l; s+al 3
ey “ “ RMS then
The, C PROPERTIES OF LAPLACE TRA s and f,g.n a0y functio
e stants and

m l.Linearity property. If p,q.r be any con

-7 [];(f)}
L[p_f(;)+qg(‘,)_’_h({)]:[)L]lf(,)}-u/L{g(f)} Ly

i
o by deﬁniti()n

Lgg -
S.-_'{ o M {/)_/'(E)Jrqg(n’)*"h([)}dr

)dt - pL{/ )
, o h(r)dt =
=ple "_f'(r)df+qjc’ ”g(’)‘ﬂfrajmc i
Th 0

1§ ; oL

"esult ¢y, easily be generalised da e operat

Ceayg it is cal®
Then,. ¢ ofthe above property of L,

Q]‘n 2_ = 7‘ 3 then

First Shifting property. If L{'/‘(r)}

L{"wf(t)} = 7(.\‘—(1)

(e () = feme F(O4 =17

0

y :
deﬁmtion L

=85
= J e f(t)dr where!
0

Thls‘slf

(5) of 7

We know the transform /
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Imply replacing by 5 _

a 1o get ‘7(5_ a).
(1) L(e"‘)— l

(iii) o 5

s Sin

(1) Since COSZCos 2y l[ .
~=|co

2 S3t+ cos f]

L(

Costcog?2 =1
0s2¢) E[L(c

= I (sinhb!) =27 b

D

"+ L(cosh bt)= 2 -b
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v i 3. I .
or sin’ 27 = =sin Errzsm@f

-

L(sirf 2{):-}[1(.\-“1 3;)—%L(5in()!)

- 3 2 | 6 _______’-Eq_—-——’
b 457 +20 4757 +6 (.s-3+4)(.\--+36)
Xam
Ple.2 : ‘
Find the Laplace transforms of
. ~3; snn ,4" . 2[0052r
(1) e (ECOSS] -3sin S!) (”) (’:‘, COS:! (l[l) e sin

S‘llu ’
‘ L e [ Mein§
0 L(e J (2cos 5 *3si:]5:)) = 314(1: L cosSf)—}L(e smbf)

543 5
=2— > 3——03" ¢ +6s+34

(s+43) 45 (4345

(i) §; L }
Ince L(cosf;):%L([+cc)szf)=:{;+?ﬁ

* By shing:
hlnﬂmg property, we get
v oy 1)1 =
L(e" cos” t) = 5{‘:_‘_’54'(:_5’:;}

. l
(lu)Sinc _ | . _lffr3‘12+s/2:17}
¢ L(sin Zrcos:‘) = _L(si113r+smf)‘ 215' %

BS’S i
hlnﬂmg property, we obtain
]
/l}
L o ‘ r-l _—--'/33//9"—(5’4)*
(e sm2tco>f]—2 (5’4) +

F‘X
q
lthQ.S If

() < /(s), show that

(5 +4)]

L[Sillha,]f(,) _é[?(5~f")“-f(s+”
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| L[coshatf(l)]:%[f(s—cz)+f(s+a)]

Hence evaluate (1) sing 2tsin 3

(11) cosh 3 COs 2t

Soln, ha '
ve L[smhatf =1L i |
| (1]=1 e ~e J./‘(r)J%[L{(: r(0)- (e )]
_1[7( 7
5L/ (5=a)- S(s+a)], by shifting property
Simila}
y L[(cosha: 1
FO)=~[Lfen
POttt o]
~2[7 7
: 2 (-Sha)+f(.s'+a)],b}’Shiﬂing properiy
i :
1) Since L(sin3r)=—~_3___
s? 3 the firgt result giveg
L(sinhzrsin:sf):l{ 3 3
2 (sayp T —a T e

i | (s~2) +32 (s+2)3+33}_“'.‘*'10‘5‘1“69

Since L(cos?,t):—__f___

5?47 the S€cond regyyj¢ gives
L(cosh?,tcosZr):l % ( )

Exam 2o r+—2r3 e

" ShOWthat ) +2 (S+3)2+22 T8 — 1052 +169

(i) L(zsin at) = __ 2as

(11) L(te"‘”):____l___: (er-fa)z
o i) i) ia)]

Example S
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I : i as
Find the Laplace transform off(?) defined
S()=t/r, whenO<t <t

=l.whent >t

®
-3t

e

—

.-S.'

—§

¢ o -jIL(i!]+

g 0
0 0 r L “

©y - |
fe dr+ e \.lu’!_“[
T

1, 0<%

_Jp 1<1%2
| ] . =18 2
Find the Laplace transform of RS

i-7)

Find tpe Laplace tranform Of[

/2+)
/2=




Exampi, ¢ Fing L{SJE_‘E
Soln, B

S 572
: = '?\/};
3\/; 3 T ] _ __J_-- J
=Z—S—SE"_E 3 +?+2\/;\/; [ F(EJ_JE.F( 2
Vr( 3 2
“T Ss:z 3 +sm +:(>_'T3_

Theorep, 4,

-

_(s
— , L{f(”’)}:%f(a)
hangeg of scale Property, ¢ LJf(,) _ ‘(_g)},rlun

=Uu
Put at =! a
dl‘:dy

. i 1
; },glven thay L{"S—[E—t}=tan‘]( J

: l
y the abOVe propeny’

L{Eifli"_{}\ el 1
~=tan s
at a :;ra‘ =

8 |-

tan~! (E]je_ L{-S_EEEE} =tan~! (EJ
s 5

EXERCISE41 :
" the Laplace tra, .
L 1+2\E+3/\/" Cas(at*b)
4 . 3COShat-cosat 3. -,ﬂlhf
 (sing g i 6 o
) Sin2tcos3z -
7. tze-Zl

04!
Sint’
8. f(x)-q{h 0515(1/2 9 f(t).—_-{

1’a/2<ISa
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ANSWERES 4.1 : asinb
g B
: s
2a’s
1%**!-2;—“\/E “ g b
s 19 6. sva) ¥
m 5'(5‘: +1)(s'+'- ) lfi-[-
yatE
2 | a4 ,]
—| l+e
1(::55; ) ( [NG FUNCTION
W
FOLL
LAPLACR TRANSFORMS OF ) then
4, — (1)
5 PERIOD]C FUNCTIONS e (7)) (
. "Od - L
1y Yisa Periodic function with pert
e f(r)d 7 oo (e
By =t () 1so0nThe?
+
) )er - f(t)dt - an
ave eI ird integr@! P )i
in the thlr ” T)f(u+2
lng CCond Integral put ¢ =u +7 > ,+T
T _s(=‘+r]f(“+t)d! ’
. =|e S
L{j(:)} =fe f(t)dr 0 . —s«'f(ff)du+ (Il+2T)etc:|
0 dl+e__,TJ‘e (H* ):
. 1 0 _
~[e f(z)dt+€7ﬂ(f)e-mf(ﬂ) [.,-f(“)‘f



Soln,

L)<

rle

2"_"1“—- -5t
I~ gl 6[ € (dr)

= 1 xley
=
0

1~ e sl

= \l\le“!.‘ (__

Ssil] mr___wcoswt

o)

L Od’]

xle

Tley

+w

0

= (lme%
~ana _
) (S2 +o? ) W

(3’+ru"')

e

5
L{, ()} =~ 4, () =~[s2 4% ()} -1 =1“’(}in @
Q)
Tranform of Error Function
W 2 Jx =t
€ know that e;f(x/;)=7——ft’ dt
T [i]
372 sz g
_ 2 & A . ¥ "—"*5_21—73'+ J
__—I 1-¢ +;;—‘3_"+ dt \/F—
I o el .
/2)
r(1/2) L0, }
Loy 2 1"(3/7)_r(5"2)+———'777 7.3l
{e,f(\/;)}zﬁ{ A T
a8 L.
1 1L Li.q%*‘;""g‘s"“
v g8t 24 S
138 ,1_+}
I 13 L
e e T
€)
-1/2 1
=rl_[l+l} :7;._1‘)—
S]f:’. s S
B
any 24)
o L g}f
Ple.l() EValaute (1) {e-u:‘]ﬂ(a[)} (11) (
§
Oln 1

.

) We know that ©1 (a0) :Jm

1

! =/ﬂ

By Shiftjg property, we get

£ {e""Jn (“t)}
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(W) Weknow thag L ey i )

=1
s(s+l)

.‘.L(ele\/;)=L(e{fM)= 2

1

Z S Ky J Y (5+‘4)
—.J =+1
4 (4

EXERCISE 4.2 ;
1. Find tp, ere” '
e Laplace transform, of the Saw-toothed wave of p
f(’)=t/Tfor0<r<T
2
he Laplae ransform of e magular wave of period 2a given by
f(t)= S
: =2a-t,a<t<2a
Ind th,
¢Laplace transform ¢ the following functions
L g
1 ez’etf(\/;) >
ANSWERS 4.2
L (1 $T)= e, 3(1~ gt 1 1
) (175 )tanh—zl-as 3.(3i) —(_\/ﬁ (ii) (;-2) s+
S +a
4.7 DERIVATIVES
M) g 7

ivel

/ 165
NSFORMS
LALPLACE TRA
\
P ()
Thu, L{s ()= £(0)+s] S ()

Whence follows the desired result.

a, hcn
. ondition, t
@ If s '(r) and its first (n—1) derivatives bec

2 pr(0) = (0)
L{f" (1)) = 52T (s) =5 £(0) -5/ (0)

' : ts.
Usmg the general rule of integration by pa

)=

0

e (1)t

et
S o
TN 0) s (0)-5

Jn-l

Su =0,1,2,
1 tm —_— ”l 2
m.lng that L{ e f" (t) =0 for

4-8, s I)I.()\/E:S the required result.

TEGRALS

IfL{f(t)}z}h(S),llaeri L':J} f(”)dtl}:

Let =1t

¢(¢) =} £ (u)au, then $'(t)




rule for g
Iﬂerentlatlon under the Integral

2 (e_“)f(f)dt =4 j=

{Je j()dt} A (F

d\' )

sign.

B
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(\ +(1)

L(cosar) =

b |
4\

. P Al
L(tcosar) = —i( A )= sawn:

ds\ s* +a’ (52*‘”;)
_ s =d
(sl+a:):
(ﬂ)SincE dindt =t
\ +u )
35t -2
d 45 :i("i’;’r
L (2 ) )
sin2¢) = (1) ;v—(_‘__:? ds (s'+2)
i
)Slnce L(e""):lf’(5+3)’
(Ce) )4—%" +3)”
ds* \ 1+3 (S 65
3 5’:—//2
,i[’a/fJ (+)
(iv) g; L(sin3) = Tas (s
Ince L(sin3;) = 3__ therefore
N s*+3
QWUSin vy
& the shiftig property-
s+1)
Lot . 6(5+]) :”’6&%
(e tsm3f)=___—;’—? (52*25+10) ﬁ}
) (s+1)2+9] tﬂ’fz
Y !
{f_]](r)}




‘--__dt:L{_:_f(t)}
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) Since L1 (0)<1-_s by ) 2= |
S . " g 1
(.vH) Ple 13 Fing the Laplace transform of (1) (1-e )/t .
|
O, (o 1l |
Hes )< * () Since , o |
)=~ L(1-¢')=L(1)-L(¢) o
& {LJ,(r)}“%{ S (-¢) r
| (~‘:+I)J (s3+1)" w ’
) LI —= |- l__l_)j-z log.\‘—log(-""l),
(111) Sln(‘,e’ L(e;f \/;): I [ l J [ (.‘; — s |
S5
les1) , 1 [HJ |
=log| —
L erf o = log( ) )‘ =-10g[*’:—r} s |
| \/;):Le'f (4)<1 I . =14, S :
— 2
j\/(S‘TI ‘m (il Sin 8 el { |
4V\4 ce L(cosat —cosbt)= T_:cr_ ¢ +b’ \_
L - -
Thyg (teffzxft)hij 2 e #)
ds | 7~~~ _ d 2\ _Zlog s
-4.10 lS\/(\J'——-—_. 2 3 8 L Cosﬂt—h 1 +a ) s
Dry gy g | e Cosbr) «( s _|-1og(s 2
S1on g T ey [ e \] ! [ )
IfL{f(t 5 2
)}= (5).then ; [1 | sted 1 St
S <77 B L g g gl
eh i 14 :'-g f(s‘)ds A 2 sz g” +b ' R 1”2 ; logI:O]
ave f(s)-q'f ] Provided the integral exists. E_Lb’ ] [
e v s , %
Mtegryy; o I Wa I 1+0)_1, f_.ifLJ ’log(sz“‘
mgb()th :—log[——é)——i 0B 2 4b o drdtat
Sideg With b 2 1+ i i f (;smz‘)
If(&‘)ds w [~ Spect to 8 ﬁOmSt amp]elq (e "S]I‘ltI d{} (lll) 00 0
; &l I:re“" ® . ’ { o L[4
lllers Evaluae (i) {e S'Lm} i) L)' !
(¢ dIJ 7 Smn uate (i) {e [ = (
e ;G
0 I)e“:;d )We
. tfoﬂ] have that L(sin F] ===~
i [Changin ¢ finteg™ s+l
ff(,) . 2ing the order of1
| Qewd“*)" i gm0t
t [- ¢ L(-S-l_]lﬁjz"_l_ds,__g_—-tan's'
" o i 3 ; -
;\{f(f)f_'iw 1S Independent of’s] 05 +1
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(ﬁ) SiﬂCe [ Sint
_T‘J =cot™ ¢

and ,
Lil oo sin ¢
{0 Tdf}zlcor(
§ $+1)
Henc
€ L{f.f{e-'iill_{ i
0 ¢ drp<_4 |cot '(s+])]
S

S_[“_“:_L\

(i) Since 5" (.s*2 +25+ 2)

2

‘5—1) (Sz+l)2

t Sint
]

‘S‘;L(fsinz):l_.__gs__ g

Ey,
ALUATIONO E: ; .
FINTE (S +1) sz(.vz +1)

ALS
BYLAPLACE TRANSFORMS

Soln, /= o Sintgy .. =g
© (D) frevg (i) [ o i
L e po o 4 dt (iii) L{I € Sm[dt}
0 t

o
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No
w Lt - e
tan ! (-" / m) =0ifm> 0 or mif

L[smz]:j ds g 6=

L(sinmt)=m (s +m:)= f(s), say

s A ©mds a8
]=f_f(x)d.s-=j o tan™
\ oS +m mi,
o sinmt T S
It’ Qe =l tAn T —
t 2 m
m<0

l(.\'/”l): 0 U‘,” >0 or ;IU. J'”<0

: 0
if ' m > 0orml2 if m<

o
I g of §
_ 7 _tan" $=¢

0 SJ +1

14

LJ (S ot (s~|)~ bYSlliﬂi"gpmperty-
l(. _ =



L

___—-—/
ANSWERS 4.3
T eha.
i e | 6
"5l (Sz +4 2 4 ; :
" 28 - 62, ) (s*+4)
(S +az)1 6 ;Zas (?+b)
(S h ) 7 log(:H-a)

SL“'[ 5 s "_1)!‘
S
S-+a2J=COSat

6 L‘][_?_L‘— =lsmat
71;I[\J_\ I sST+a’ | g

S ‘;sinhm
-1 5

8. L [_"—'_‘T =coshat

9 Lﬁl S___a Ry __a..
+b? | =€ cogp,

].0_ L‘I _‘__‘—]2‘__ = leul Sin b[
(s~a)’ +p? | b

!sip
2 at | ] Gosm}
X a 2. L o ol (sinaf"”
Al lts 5?4 g 2a°
Ple.16 piy . tSISV‘?rys pl ee)
In L
2 Ve S€ tp. pr: ofare Omitted
-3 Angsf, e
(i) 2=3s+4 Ormg op
3 i
§ (u) 5 S+2
iy \48-{.]3
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\

s$+2

@2 ) se2 | _j;&ii-J |
) [S‘-4.v+3J—L [—(5_2)3*_9] L [(5"’2).4-3. J'

4 a0y
J:e”c053t+‘3'e sin

1
=7 s=2 N —:
- [(—2??]“ {(s_zm-

Mple, .
7 Find the inverse transforms of

45+5
.. Lo

(i) 3 25 ~6s+5
() (5-1)(s+2)

Yoty e g
L (
)Here the denorninator :(S_I)(S_.z)(_g-:;) .

Sol. ler_25*~65 46 A

=N =2)(m3) 51 5-2
Then 1
A:[z-lz~6.1+5]/(|—2)(1-3)=5
'9:[2-23~6.z+5]/(2—1)(2—3)="l

g

5
Ol g2 =l
=[2.3 ——6.3+5]/(3—-l)(3‘2) 2

RN 1
T——0s+5 1_1(1)=L-|,,._«2- 7
] e | §—

Sells-6) 2 \s-l
5 u
l 1 2t 4 €
_Ee e +3

(ii)Lez“S\JfS y __{La%
(S‘l)z(uz):EJ’(s—l)z (-#
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=4 1 n 1
] ... ,4 = - - . 5 : :"2 +~a
3 3 (11) Sln(:e i +4g* = (.\.: . 2(;: ).‘ _(2(”)1 . (5‘ -:—2(154'2(1 )(9 as )
|
o4 , ] |
L [# =~]-/;' I I | e e, ASRE __(f—i—D—f— I
) (S+2) 3 :—l +3L | = lL | (___-) Vgt g +2as +2a’ st -2as+2a i
(s -1) 3 s+2 Mu]ti " {
1 | Plying both sides by s* +4a”. 20 |‘.
= et L g , 5 +208 !
e Ple.1 Fin thej . L 38 s=(As+ B)(-v“ ~2as+2@ )+(CS+D)(Y
€Inverge tl‘anstn,ns of
0] 3543 p |
§=1)(s? Quat; :
)(S +23+5) (l.l) ____‘._5“—__ lng COefﬁCientS _\‘l,o =A+C (ﬁ)
S ¥ Quatj D i
O (i) Ler ( )(5 1 5(1) R "8 Coefficients of 42, = 204+ B+20C” @) |
Y 2epg) = 1)+3 Quati 420D - |
S+5) mﬁh—@i tlﬂg Coefficents of « | = 24°4-2aB+ 2a°C+44 () ‘:
Multip F2145) 25 Pug s |
lp]y]ngbo " ttmg fim 2 © |
des b (S~l)(sﬁ+2 B =0, O:2u:B+2“'-D |
5 .
+5) Om (1\/) \1
FH3=1 (524 “ (ii) ’ pep=t =0
ua S+5 ' ; t A=4"
ting the ficientg o )+(AS+B)(S* ') h Pecomes 4+ C =0, and by (D), WEE /44 p=1/4
of's* f . ®n (jj; g=-1""
O=lv g, oM Pbothsides, i educes to p_ g =1/2a a5 ) ! J
Puu'ﬂ’lg 31‘-0,3.__5 "-Az_h] ) | L'I[m
RREY:] " . 1 +—2 577
) ) I ( s I .5 (',//?] Aa
S B= - |=—L 2 2
’ LJ{ 35 4 2 st 4 44° J 4a 5205+
= ! |
3 l)(32+2s+5 =l | - /“: w
) T |+ L —5+2 1 1 .+—/’L (5’”) '
§—~1 ;3\__} = N — | 4a
e +25+5 da (s+a)" el , fsiﬂhat
<L '( 1 . ) _Lsin®
Ii‘l‘}w;l % %l g &J’zaz
,(S+l)2 | 4 e 11, . L ginat| 72
+4 i a Singt+ —_ —p*ginat = 2(12
=/" 4 .
LI[?L)__EI_ ‘ aa ISE 44°
1 & ; B EXERC
‘(S+1)2 +37 1 ! Ing ¢ +2
, e o= | Be iy, of 2=
A S+1)" 422 ’ L ®rse Laplace transforms 3. &-°
‘ 2)° 3s

2. 52 +25{8




IL,

I,

f(ﬂ]‘f(;)’me"

[f'(s,,a)]

i “D(s)]}.

Dang £

L
——
=]
~/
—
&
S
=

f(S)}§ 1

Se f(t)

)

0) =0, they,

< d"

@ ()

it

aplace transforms.

Provideq f(0)=f'(0)=...----:f

1 (0)

of fing; e
esionf ulalgg the inverse transforms which dep

A\Y

LA
2 LPLACE TRANSFORMS | 176 =
g s hel ﬁ
s(s+3)(S-2) 5 .\22\—%‘5__ P
p —6p3+1]p_6 6. (.s‘z—l):
7, —1t2s
(S+2)2(S__l)z 3 " .
() () e
s =
l. -2--._312 +l 4
Py ) |
1 e —4y 8),r _‘:___
Tl - 353
5€ 5. %e,_e,+5 . |
2" ~tanh?
7 -!.!( ' 2 6 > tan
3 € —ol
o F e 9 l(cos.:nf+ct?’5
FIN 3
ghe 08t effact: N GINVERSET ¢
DllOWil]g . CCtive eth RANSFORM o i
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A

lso

in rm
"ithej Inverse Laplace transfo

L1 (5)]

e

f(r)dr

{Li}i{ l; j/(r]u’lldf
i ol asso 0n
Ifr' :7(_\-)} = [ (1) then
(=1 r%{m]}

in s
ﬁndlng f(r) when f

0ne ;
nlen“y calculated.

(i) =2

‘—s+3

(s) 1

(s+2)
(i) (¢ ( 2 445 +8)

“(s~2) 4 4(5-2)+4
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= pd
_er+4€2't+2ez-'[2 .

/

[Using shifting property]
Ul
5+13 (352)2"‘32‘}@?;;—)7:3_{
1:'{ $+3
2

= 2

=€ cos3yd .
—e
3 Sin 3¢

- 2
(ﬁi)Ll(;%%?)=L“‘ (s+2)
(32+45+4+4)2

(s

= E=Z'L“ 5'2
+4)

e

=Z_Siny;
\2-.__\5 49‘21 { 1

=2 | 8In
L
4 T Rk

=g~
{F‘I‘Z"‘\:—L‘F e SIHE[ I
)

[Using shifting propety]

=/ (-S'-i-Z)2

R )

[(s+2)" +4]

(52 +4)

Z[m_fcosm}

g —

2

2 }h _2'{%2’ 1 cos 2t
4 2

s +a3) (i) |/_;(,g+a)3

; \ 9
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1
(ll) L-ll 1 = ‘___________‘-} =e “th{m}
(S+H )[ IL[(\ + u))u](_\'-%-tl)

\

1 1:[(’ (“'F";’—‘ byllla

e s

(-‘f“a)_s-' J ' a
. a r:,m»l]
af _ —

1
E'{i__l_ml,:Lj(g“-m-l)dr:;_?(‘ 2
("“U)-Vl I a’ 1 J,J
1 at _ gt 2
Al : _ 1'—8
Hence LI{'———i__ _ it __I_L( u__ﬂ:.{-—--—[”"])’a}{
S(“’U)z —C g 2
b
4
"l "
"d the Inverse Laplace transform
(i x . \ -
L =2V
*a-)‘ (i) (s,: ‘ v)’ (ii) (s +a )
by, '
| (i) /() " 260V 1
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| 1
ALPLACE IRANSFORM

——/

They by (IV) above, ¢ f (t)=r { i

a7l

ds

I8in gf

: 25 ;
or -—._._,___.._:L I - S5 —
a {m) Hence £ {__

2 2 :
(s' +da )

(ii) In (1), we have proved that,

-1 5 1
d {m}r-z;rsmat:f(!)

' say
Since 0)=
7(0) 0, we get from formul, II above, that
o -l :
{_(;;:‘:-—2- =L S.'—‘_’—i—_.z_ =—d‘[f(t):l
a ) (S“ +az) dt
o8 ( . 1
(i) d 5;‘““"“’)?Z(smafmw”‘)
(1), w have showp that
L s
(s24 2)2 —;—(tsinm):f(t),say
By formyj, M apy,,

sm]=0ff(f)d“:

(—-cos atjdt}
a

1

_—_—

£l 1

r

=1

0

f
\ sform 0
L ace traf

wers Lapl

3 2
S +a

s ()

= (Sin at — at COSaf)
a
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—_—

s—1’ thenby 1y above,

tf(t)= {~%log(g—:]} =% i {5; log (s + 1)} + L' { i }

—log(-\' = l)
ds

Soln. (i) If 1 (1)< - log 5*!

:«L‘l(—-—l._._J-th‘f [-—.l__J =e¢ 4 e = 2sinh¢
_ S+1 §—]
Thus T(t)=(2siny),

(i) If £ ()= cot™ (%J then by 1y above,

Tsrf g, 5)}-- 75)-

T | =sin2¢
ST 42"

e

Let

0

’ :uld!
LQS(:):] e™ jllj: f(u]g(!—u)f J

[ : ntre
2.”(’ "f(u}g(r—u)u'udr | grallsthee
09 his dOuble nte
: ation fort
The domain of integration
the lmes u=0and , -, . o
. .We N
a Changing the order ofintegration
{tdu
q¢0ﬂ=i]c”fhd£U*”V
fu
-_" ~t J’ ~xl1-u) - {r_u)df}(
s £ -] é
{( f‘(”) ;[L ( 1155?
. !—"
uttms
S g j e "q(\’)dv}d\’ onp
e e
2(s)
- a‘u.g(s
j tem f(w)
) E[e““-f (u)g(s)du= (I) € . il
g des 5 4
~7(5).2(s) whence followsh o
().g(s) whe e ;
va
Mle Lemt0€ 5
) PPly Convolution theo %]52
-l 24-0'
r); (5 |
SI (md g( ) 05(1
e Tey< o _s 1J=cosaf f(#)/ ‘
.gl +a” . )f/sjﬂ
h et )7 a
’ Q()rwohltion theorem, We & " (
~1 I

f
sina(
a
] a;[
I s 1 :—_Icos
P e 3 2 0
Y +a' §'+a

<L

dt
t = clf)]
P £ [Sin at —sin(2au

|
83
s /1
FORM |
TRANS
LALPLACE

¢(")=j Su)g(r—u)du

0
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:55 usinczr+~2—la—cr)s(2cm~at)0 :Elf—lrsin at
wil @ L
Hence ——’——.__2_ =—tsin at
(s'+a2) 2a
EXERCISE 4.5 :
ind the inverge transform of
I 1
I 53(S+5) 2 _TTS—-, 3. s° ('5.2 +d-)
as” + h*
p *——L___ 2as l—tlJ
.SE(SE"I‘]) 5 (&ﬂ_——“ 6. log( 2
S +a )
7 log(ii’_‘i) ogl __s+1 1
‘ L
S+h 8 ¢ lmj
Sing NVolutigy, theorem, evalaute
1
-+ I l L,l—,z/,;,a)
(M)(Hb) 0. £l 1 .5 (s
: § .s"+4)

1 bt 1 [ lsinﬂfJ
2. —cog| 2 —|t-
* ((l] 3. a” a
4 }_2+Cos{+1 [
S sing 6. P
1
7- ~| e~Bt ~ar )
=, ] e
8. e‘r“e'2'~c“3’ 9.

mS /
LACE TRANSFOR
LALPLACE

S
E QUESTION
MULTIPLE CHOIC
\ 1S an® 75
Lamac t of (rsinf) 185 3
Blransform ) (SH)
2|.
(a) (\T
5§ 4 /
@+
P (‘%:‘r)
; ~ned as Y
- e defne .. j(
Dlace trang of f(t)r==0150¢ o]
1sform ( )H
® 5t 3 f(r |
(a) e f(t)ay e
a
(C) [e“"f(t)dr : I:a
". » as “(m); 12
nit Step functions is defined as o &
= zda
(a) U(l‘#d):[? [ <ua (d) ”(a/r) L I
t=a
(Q) “(L_q)__ 0 Foz
= l >4 ] ’
L e Sing) o
l
G ‘ )%
5t + 45 +35 (d ;
(o) _ J
§2 | -
~dg 2 Gt 015
II] ] 2) 1 ( :
te~2,
(&) te 2, 13T e
Sg apla(:e tranSﬁ'OmO
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19

20.

21.

22,

23,

24,

25.

L' =(1/5") is possible only when in is

(a) zero
(c) +ve integer

P [#()]=170),then £ [er= ()]

(a) f(t+a).u(z‘—a)
(c) r(t—a].u(r+a)

Laplace transform ofthe un;t

(a) g
(©) e

oS +3547
L _?_' =i,

2
(a) 1~3:+7%

2
(c) I+3t—7£2—

IfL{f(t)} =__f(s), then L‘I{

(a) ] /(1)

(b)

-ve integer

(d) negative rational

(b) f(f—a).u(ta)
(d) f(t—a).u(t—a)

impulse function § = a)=

(b) et
(d) e’

(b)

1+3t+?‘i
2

d) 1-3_71
(d) 3z72

®) § 7 (s)ar
© | 7 (1) @] /(1)a
I)ds
If 7(r) is a periodic function With Period T, thep, L{ S (t)}
T e_r_f({)d!
@y (b | Ll
0 (1=e™

T e f()de
© 154"

[fysatisfies ) 342y < with

|
@ (417 (+2)

1
© o2

(d)

} e™ S (t)dt
0 (lhe*”)

(0)= ¥'(0)=0o, then L{y(f)} =

(b)

(d)

1

_—

(s+l)(s+2)

1

—_—

(s—l)(s+2)

L[e]' (2cos 5t + 3sin 4{)] = e

2 12
@) s —65+34+ st —6s+25

@), 1
5 -05+34 ' -65+25

(a) ‘(‘-—iﬂ_‘
S+a)“

/| 189
LALPLACE TRANSFORMS

12
2(s-3) T 125
(b) 7gee3d 5 6%

T_6
s 12
6

18
t_6s+25
(@) 7ogext £

1
(b) Tsrtog?)

1
(d) (;1@’

0 ¢
@) !

o
® (-9
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33,

34,

6!
© (ra

s+a)

s
_'—‘—-—._

(s2+4)2 is
(@) 2sin2r s

: t
(c) siny +5CDS 2%

5!

(d) (s+u)F

(b) Lgin 20+ cos 2t
4

1. o
—sin 2r 4+ —cos 2!
(d) 2sm + 1

2
(b) =

(d) =

1
(b) s(s+4)

(d) None
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""N..______
3. =
Laplace transform of tcos(at +b)= (s —d )msb+2ssinb
(‘V1+a: cosh + 2sint Lid 2
g by ChEt)
(.S'_ +a )
(C) (-"'2 -’ )sin b+2ssinb (d) None
“—‘_‘——»__—___‘—_
(S: +a’ ):
39, I;
place transform of cos(4r+7)= 4
(@) 2 (b) (.?'2)
(S-i- 2) ’,’g/
() —2_ (@ (s+4)
(s+ 2)’
40, .
Laplage transform of | > =
0 X
1 (b)eot ()
(a) :tan" "
| @
)
(©) 1o )
4 2 :_2_;_1—— =
1 F(6) CO%[[-T} i 177 then L[f()]
0 Tt < ‘2"7’['
[f t 3 ;A(S.-al'
®° 7
(a.) e‘g )
8* ] (1:1)1\10Il
(C) e‘\::'r"‘ 1
L . £ ' !
in ‘X 1S
dthe Laplace transform of in () ol
() 1 2
S+ (@ 541
(©) 5

S“.J!_l
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43.

44,

45.

46.

47.

48.

Laplace transform of (\ft ——}J
t

§

(a) =

1
T+l (b) m
(c) does not exist :
(d)0
Laplace transform of cos(wr +) i
(a) 5cosf +wsin@
5% 4w (b) 0

cosé@ —sin g
c) ——owu
( ) Sz +W2

scosd —wsin@
(d) ———

2 2
ST+ w

IfL[f(f)J:% then L[f(z,),_f[%ﬂ:( _2)1(

@ ks (25-1) thenk =
(€) k=2 () k=0
L [Cot'[ (1+S)]= (d) =1

1
(a) ;e" cost

|
(©) ¢ e siny (b) J¢'sint

(d) tcos™
InverseofLaplacetransfoIm tan"( 3} st
o= o
_ sin 2t
(C)ilﬂtg{_ (b) P
’ Cos 2¢
L6 =1 0) then 1 L) e
@ k7 (irk)
k
© /(1] ® 4[4

(d) ,lf[ﬂ

k
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9.1 s(s)= m{ 142
L

2
(a) T“ cosar)

2
(C) ‘t‘fl-}- cos at )

50 L_l {Ji_— 4 ]

and L' [F(.\-)] = _,f'(!) then f(t)=

4

(b) 7(1“05‘”)

(d) None

st ~d4s420 |~ (b)e” [Gcos4r+25i"4f]
(a) e'[6cos4z+25in4(] ' None
(C) o | | (d)!
51 [6(305 41 - 2s1n 4!}
115 [F(s)] = [ (1) then L '[F(“'"”)} ) f"(!)
' (b) [
(a) e (;)
(d) Nome
Derriy NS)
TIO
£ QUES
1pLE CHOIC
ANSWER KEY (MUL 6.0
) '
{]l‘(a) 04. (d) 0548 2.(d)
N 020 03.(0) o " g
10. '
by 08 09. (2 o Y e
10.
Y 14.(b) el 2t @ 0
8 20.(d) 21. (a) 2; o 2 & ke
31,(0) 26.(b) 27.(c) () 560 po
; 34 7@ @
7‘(% 32.(q) 33.(a) 0(d 48.
§ 4 41(0)
'y 38.(b) 39.(0) 46.
‘19‘(3‘) 44.(q) 45.(a)
50.(b) 51.(c)
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5 When K(_\- \_) e o ——-—'—‘_'_'_—.
F OURIER ,x)=x""' it gives the Mellin transformof f{X) 1€,
= TRANSF
ORM , *.
: S : IU(.\'):J .’«(_\.).\_x Ty
T 4 i
TROD / (1) FOur‘
UCTION . ler Integral Theorem
Inth]s C()n : . . ‘
T chapter, the well-known S0 t:dcrdﬁ"mo” 7(x) whichsatisfies the Dirichlet’s conditionsmevexymterval (-e:c)
Studied w; ouri ‘ it we'h
; chwi €rtran e ) (ites » We have
Particular transf; Wilbe used the solutj sforms will be introduced and the™ prop F
v ormt 10n of : ) .00 ‘
Conditions of th W emipyeq fo, th partial differential equations- The choi®® f(x)=22 43 [a+ cos i b sin—’E'—E M
1 / ) = ] - n" 2
transformWh eproblernand the eng € solution of an equation depends o7 e bO da? 2 0 p ;
“13pplieq S With whj ef w | p
i Url he ] « 1¢ i 11__'!
Variables by o 10 a partiy differe ich the transform can be inverted- Fo l re q, = S 1 (n)dia, = Ly f(#)eos nat g and b, :?J-'f (r)sin=
' Ntial equat; ; ﬂdeﬂ ‘ el ¢ &
32 DEF quation reduces the number of 1S indep® SUbStitUtin : .. takes the form
INITION g the values of 4,.4, and b, in(1),1t takes
The int ' D)
i (x [ # : nw 1-x)
altranSfo Ofafu j(\):;?.[/(f)d['{*'l—z .l-(r)cos__‘_(?‘—"(ﬂ
i = ¢ *n=1
5 NCtion 7(x) den ( | the right sideof @)
f(S) E‘I oted by 1 I:f(l):' 1S deﬁned by Ifwe - _— )| e mwerﬂes- he first term O
Where A f(x)K(S;x)a[x approa ssume that [ |_/ (.1 ax ¢ o
K(s,x) 45 ches 0 as o, o . sinCE
functig,, o Calleq g, ;
*) is cay Stne] of g% I
ed the tra _ofs? = [ 47z
: Three g, erse tr nsform and is a known funci®’ T 2 S)dt|s—1 |7 ()] de
) When Pl exany Ansform of 7 €secq ds to
(S,x);e“sx 3 ples Of kemEI ) nd terln on the I‘lght Slde Of(z) tell S
) ]t a
e leagg foth re as follows . |
Fs)<7 ©Laplace ¢ Li—§ f‘(r)cosf—(—!—_-ildf
(,) 0 f(x)e“udx ranSfOrm ij (x) , ie *C on=) " - ﬂ'
s When K (s 5 g /cZ )
er)aes = e 2 g 8 (g x)dts onwriti®® "
,Wehave th 2l 204 | f‘(:)cosm)/l(f"
w e n=1 9
x f sy ransf S l Ed ﬂ'
7 0)e dx ormof f(x),1.€ > Ofthe form Lt L5 f(nbﬂ) o F(/{)d (3)
Th =1 - \)(ﬁdﬂ
s et
('1) o 0

¢ (2)becomes /
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Which is known as the Fourier integral of Filz)

USing (4), a function f(x) may be repres

IER TRAN SFORM

Fourier integral rcprcscntation of

a function.

er integral as

ented by @ Fourl

2 ior o . 5y
(2)  Fourier sine ang cosine integrals. F(2)= LT (2 )cosAx+ B(A)SI ax]dA
f(5Y=— ([ A(4)cosAx+ 24#
E . Tt
Xpandmg COS)‘(I '“-")1 (3) may be written as 2o dt UO)
, i _ : ,,-(,)sinu:
] ) Where .-!(ﬁ): i os Atdl: "’(’]‘) L
flx)== ) , ‘ )= [ f(r)c ;
(x) T gcosz'\_{ S(t)cos Ardrd s +%J’Sin Ax | f(t)sinArdrd A 4) I
To i ) . Ty 5)]
If £(x) is an odd fypeinn 1 18 1 7(x) is an odd fuction, thenby [BY¢ (11)
even Then the f nction, £(r) £ (t)eos s is also an odd function while / (1)° ) r(r)sin A
e st term on the right side 0f(4) vanishes and, we get f(x)= L B(2)sinaxdA where B(A)=%
(=21 sinaf £ () o
| x{j} F(t)sin ardr gy (5) If f(x) is an even function, then [by (6)) (12)
Whjch 15 knOWI] (1)cos ardt
asth S _af fu
- eFourlersHle ntegral. i { = 2 eda where A(A) I]
imilar]y, iff(-r) is an : f(x)==] A(A)cosAX
€ven ﬁ-lnct]() To
n, (4) take the form R
T ()22} cos 14 Yam (x)=1 for 0SX=T
I4 ple . / (-‘ )=1 b
wa ] F (o) a0s e drs 6) FBrpress T oy xo 7) o (2) 42
WhiCh]skHOWn as th . . - I ]/CoS[J’T“ Siﬂ(-\ L
(3) ¢ Fourier cogjne Fourjey . Lvaluat€: i
Complex forp, TFouriep megral. °r sing integral and hence evalu® < (sl )t
i e o(f);
| Ntegrals Equation (3) can be written as Sy 7] in(4 \')‘H':[ :
f(-\’):___ » n. . il :;15
27 ] J_ (i )Cosﬂb(h Y)drdz Q) ® Fourier sine integral for A
because ¢y ; ) . oﬂof
% We hay Baneven fy... ‘ 4 func? 5 = n (A0
’ e nctig : _ B an o =Z [ sin(Ax)dA[ s
nof. Also since sin A (7 x) 18 42 g) sin (Ax)¢ 0 1,(;05(’”1)5“1” )‘M
0:.;__ Jff __Cos(/‘“)ﬂ;%l e
,J‘ N = ) "Ht-x)aray 8) =~ lsin(Ax)d4 ™5 w055
f o multlDlY(g)b 0 7l f;r Lo bove imegl‘ﬂl
| Ylandaqq i to (7 zr ()0 / 11.1<30fthea
f(x)< ] o Lo cos(Am) o (4x)44 727 PERL
22, 1 S () Ydt d 9 L 5O 1t1‘1uityo |
/ Which is the comp. At ,whichisapomtofdls

form
Ofthe Fourjer integral,

—
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Fourier siné transforms of

2 L e
2" 0 Ya) s
2 4 ®)  Finjte Fourier si :
5.4(1) Four r sine and cosie tmnsforms.Thc finite
ourier Try S(x).in0 < x :
nsforms x<¢, 1sdefined as
Bewritin
‘ g(9 F ¢ .
: )of 3as f(x)= 1 J " = ;" f(x)sin ’—M_j— dx wheren in an integer
| it Follow s, d“:jl S(t)e dr, I ( transfoﬂﬂ‘)f F.(n)
) - " , ) . jer sme %
atif F(s)=| ¢ 0 _ e function £ (x) is then called the inverse fin Fouriers
—n d emd! I 1 .
then (1) Y Slven by, f(x)= 25 o (n)sin’—iﬂ
f(\’),—__[_f F( ) [h) Finit Gl ‘ e tranSfOfms Of
- 27 $)e e e F . = jer €08
The fines: ds ourier cosie transf The finit€ Fourl
Nction , (%), in sie transforms:
: L N0 < ;
nction g give( ) defineq by (1), i @ <x<c,is defined as
) ourj 1(2).is called > 18 called the Foyr JsO the
€r'sine apq o the inverge Fouri ourier transform of /() - s ORIV e .. an integeh
. u : = x)cos = dv whe ~ IS¢ |-
Sine trangforms . rier transform of F(s), [/ (x)cos— Ix wheren! | fonnsofwhi"h
F(s)< of 3, it follows that if ' The ; — 11n1t€F0url
=T 1(x)s sthat 1 iS o function f(x) isthe called as IVEr®
in sy gy 8lven RS
g
f(x)= 2]- 3)
ol [ £ 6 § )2 ] 7 nrx
T s\ 5 3 = . 2 I ades
T—_— s @ ® hrg AU R
0<x (s 1 PR octively
| s Ao the g, - CTedb PR RTIES OF FOURIER TRAN ey 80
‘ o5). Qs F(x) , n as the Fourier SI0€ tra . Property - if F " Fouric tr
| ity S Evenby (4) jor s by Ryt F(e) and 010
tollgy, Y (4) is called the inverse Fou! Flaf G(s)
F . Sﬁ-Om(6 af (-\')+bg(_\*)]—‘— (;F(_¢)+(I .
G)<T ¢ ) of 3 that if Cre g
o T Weog gy g and b are constantss d
| o ()%
| F(x) <2 } &) e ha‘ve f )d nd 5)7 LL’” g(}) 2 g ()dx
The fus Sin ()= e L] e
| e ﬁJHCUOn F, (?) a 0 (6)(:08'%(13 Jd = ff? emf(x)m *J
in Sde ) . R [g(-\‘) X~
| O<x<o. Alsotheg Medby 5 i Flaf (x)+bg(x)]= 1€ [of ()7
Mctioy Sknown as of ./‘('f) 0 - of f¥ , e
/ e Flyuriier sl 1 anstfmS i ) i form
sme 05" Ch = (:F(s)b+gG(5) xFO jer f
) ist

| transformof 7 ()

X
» dS o
glVen b ' '
Y (6), is called the inverse Four®

F(f(ﬂx)) s%F[ﬁ], 2?0
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wehave  F(s)= ] o (n)gs
F[f(ax)] = J, C’mf(a.l:)dr Put ax =1
sothatdy =dt/a
=] e f(dtia=LF sy, I (s i
L a2 [by ()
COIEE (s) and £ gre

. & Fpiie. o _
5 %y : | ourter sine and cosine transforms of i
en F f(ax)]=5p(s]
¢l = andF‘[f( )] <1 [YJ
a '\ | S (ax )] =—F| 2
o G a ‘\g
Ifting Property: If F(s)

is th .
| ©COmplex Fourier transform of /(x),then
! g F[f(“{—q)]ﬁ___efmF(S)

weh i}
ave F(S) = 7J-’ Bmf(.\‘) ;

Put x=07

dx
srefit
so that dx = d

F n
[f(x‘_“)] ) —{, emf(x‘-a)dx

= j en(.'ﬁ,)
- .ft oo s i
4 Modulation th e L (e e (s) [by(l)]
eOl‘em:lf )
F(‘S) 18 the Complex F ) P Of f( \') th@n
| ourier transformot J\=/?
f F(y
} (-’-’)COS(U.‘) :l{P(A‘
& 2 +a)+F(S_a)}
we have
; F(S): Jt‘elinf(r)d
- X )dx
| [ (X)c
DSax = isx .
] ﬁJ;e j(x)COSaxdxu J e""‘ ( ) ey e a j
ax
f :J_[} f i 2
2 & @f:*ﬂJ\J{.(x [ 5 .
Cor. If f.(5) ang )(x+kjle“—n)‘f(x)d)\}HEI[F(”“)*F( -a)]
* - 17 F( 2
<(s) a fi
re Fourler Sne ang cosine ¢ 7 £/ ) respeo
ransform O

(x) respecti"eiy’

FOURIER TRANSFORMS / 21—

(M B, [_/'(.\')Cos u.\'] = 71)-[!7‘ (.s‘+a)+ Fj(s—-a):l

e l —a
(11) F [_f‘(_\')sin u.r] = ;[F‘ (-?Jf“)*'FJ(S )]
Ir e (s-a)-F s+a)]
. (1) F [_}"(_\')sin u_r] = E[F (s 1) ( 2 8 1 95
Xam
Ple.2 Find the Fourier transform of
or |x]<1 ! sinX gy
g e
lO Jfor |1| >1°
Sﬂh’l
¢ Fourier transform of /(). L€
¢ ; ,fi’/ei
' s gy = |7 is
F[f(\)] =] f(x)e"dx= _Il (1)e" 4 = s |
) =2
ehave F(s)

Thug

sins (. For s=

FLr(x)]=F(s)=2—+

e he : et 1«1
by the inversion formula, W€ & A

1 for | 1
25inS ,ds = {0 for |‘| 3

2
Py
ttm i Vg]‘l.
& =0, we get dis®
i 18 s sme’t
it S ds =7 1
Tds:ﬁ {) s - I hE
=~ 1’ "
= 0,|.\'l7l

by
Uy
ble, ;
’ Find the Fourier tfﬁ“Sform

. X g
Ty = ¥ coS I__.s]ﬂ.f COS——[L‘
eeVaIUate j_ "I;__::___/ 4
0 P
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Soln. F[f (x):l = T f(x)e"“dx = F(S)

> say

:_L(O)e‘“der_I] (l—xz)esndx+:f(0)e’udr= (1~-f3)£‘:—(2_r) e +(_2)i‘”_1
"S (is)’ (is)'|,

€ e e e
5 A ik A .
( — } (Tj—hg(scos-sms)
- Nowbyinvers;
byinversion formula, we have

1 =
f(x):—z—;—{oF(S)e*r’ndS

] o
ot -—— i(.';cns-—si i I-x* <
2r &gt ns)e s o
0, ]xl >1]
Putting . _ 1/2 We obtajp
1 =4
EELF(SCOSS—SEn s)e“mzds = _31
4

T SC0Ss—gin ¢

or H{)“?——n[cos—s-%sinf S
2 gt

7 52085 —sip

or _,L 3 S.COSEQ{S'::-_:sE
2y

[ Xcosx—gin

or [ ZcosX__3
3 .COs — o 4 s
0 x 2 g - Since the ; i
Integral s even.
Example.4

(a) Find the Fourjer tra

reciprocal in respect OfFOUl‘iert N8formg of ety

| ransformg.
(b) Find Fourie, tranéform of (j
i

) et )
Soln. (a) F(e" )= T+ o,

o 2.2/ ,

o ~=a 3

o B
-

dx

t, 7
a>(. Hence deduce tha

=[le" e “di/a

Hence Fles) Vo

Taking a =1/2 we have
) )

T ; : e aconstant
he FOuner transfromof , 2 152 €O

- roca
. - recipro¢
a _l.‘ 2 Self re
re Same. Hence it follows that ¢ 15

(b) Sincg v g | PR = f(2v) where f(x)=¢

F(eﬂ(l 3y ) _ ﬁ?;e"":m = ﬁ

03
FOURIER TRANSFORMS /2

[ Putting a

ems ¢

(x-1's/2a2)=t, de=dtla

ferdt= Jr
12 and
the fnction ¢” ?n rni
. 0
erthe Fourtef
4
(i)
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x, for 0<x<l

H . A . L x<?2
Find the Fourier cosine transfoym of /(¥)=12-x, for1<x
0, for x>2

Example .5

Soln. - Fourier cosine transform of £ (x)

ie.F [j(\)]
=11.()

1 ) o
Cossx dx = {) XCossxdx + | (2 =~ x)cossx dx+ 0 dx
1 2

. 1
S1 —
s nsx%[ cossx]

; = 0+(2___\-)5115"[_(__1)~C::§'m’
1

. =1
sin g =
=(~__+ES_;E]’ +| 280525 in o Cos s
s 5 st PR S:lJ
2coss c
_ 0825

s ER

s 2

s

Example .6

!

Find the Fourie, Sine transforms of
e

Hence show that [ Xsinmy dy = TE™

1452 T,m >0
Soln. being positiveinthe interval (0 ), e
» 0 ,e“x :e":
. Fourier g;
¢ transforn O/ (x) < e I8 given b
N by
‘Fr f X :m N
A (1)) gf(x)smsxdx:T Sinsy g
SX dx
— e—x
| M — o
1+Sz( SlnSx-—SCOSSX) Ay
| ' I+ 2
Using Inversion formula f, Four D S

coxsinmx o, .T_L_—-
Hence I v =
o l+m - 5
. ormof ¢~
fampe 7 Find the Fourier cosine transf

g e = [(say)
St)ln_ We have F (t’ : ): [e " cos sx dv = 1(s¢

. . ) s \.V- ['.t_ S-
leferentiating under the integral sign

-\ dx
L=, . \[=2xe )
il‘ = “[ xe  sinsxdx = = {(511‘-‘-‘)(
dS l-l L 0
= l ‘%in et ‘ - choss.r.c" d—"j
2 | o 0 0
dl ffidx*'log"

& 2 & y—7= 7
:“ij(‘ Y cossxdx = -;1 L

20 2

1 i 4)
log/=="4jogc= 1og(£"’
4

14
cé

[’ie"‘m
J’f;-e,]’ )
p ":ch':/'ri. i
je &2

0

1 . -d.\':
o coSS¥

Putting s=0,¢=

S‘lln Find the Fourier sin

e
. l.Sln
X) = g /x , thenits Fouri€
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Integrting wrt g ; g B >
Lts, w _ ) oxgin® . 2 il
e obtain F(S)“f;—j}-ds: an S, Now F. [fﬁ(-‘ﬂz '[ll:;_\‘_:_dl = from (1)
a 0o I+
But F(s)=0, wh
B £ S:O’--- = - 5 » =0,C-: =ﬂ-[‘
Example .9 #=0 Hence F(S)ztan_l(sla) =(x/2)e ", from (V)~w]th : . 0
mple FllldtheF . Ex . £ Lo g
ou am . . ofx
1T Cosine transforpy of S(x)=1/(1+27) Pled0  Fing the Fourier sine and cosine transtor™® ;
Hence derive poyr: — .
ourier sine try Soly
S form0f¢(.r)=x/(1+x3) We know that S )= ] X" Tsinsy dx
o E{f ()= Fossx ®
01452 dx:.[,say (1) ) ; ;
f(x) = xmt cossxds
i w g !
:i;:{—as—:;:idx:?ij—lgfii : F ‘ sin -x‘) " 'dx
. e -1 Fr n _ R 1 SX)-
0x(1+x2) ! (i) W Yl (" ) = Fimamen
’ x(]+x2) dr=-Tﬂ§f£dr z sinsy [I]c 2Rk = (j,e (fa—s_ i
0 x +-[_—__,—£ X
Z i) ) r(o)
—_ T = . W A2n l“ n
, ds 5+ [-2nsx o =1 = (1) r(n="y
2 o Svdx ‘[‘_‘} [ e dr=er S
(1) (i) ) s () ;
& . _ ﬁ}r(n)“
—-=[_*Cos nw , iginy
2 I Sx n LEal 2
ds Q(}j;;z-jdx:[ :(COSEA-isinE) r(n)/s" :[cos 7
B 2 2
d’r Quat; e gel
= In : . arts,w =)
2z~ I=0,, (DZHI)I, & real and imaginary P
Its solut % Where p_ 4! "
on Isg, ds F((x"“): I‘(")cosi—
1 +02:e-; ) 5" 2
v
Ay -—C]es =g et and F nedi r(”) . onr d F (5)}
2 v) ;(x ):———sm-’ ,/{ v
When ( ) s 2 /()7
$=0, (i) and (i) Xa 4o )}-E[-‘-’
Veey,. = Pl 7 () .
R 11 = %' fxe
Also when - 0, (i and 047 = 5 (a) Show that F. [,\f(x)] ds s o :
) giy osin® 05
Solving t 2 Ce~c < _ . oaand€ NZLS
g hese, G ‘0,02 =79 2 /2 Su]n (b) Fmd the Fourer sine y ;T f(})(
, . ‘(a ’
Thus from (i) and ( iv) Wel ) ;
dve g il
S T E ds
=(7/2)e-
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(J;{-Tf(x)}sinsxdr:_[:[ o] R
| XX
) ( ¢
sl EE)=Lf
" [f (x)sin sxay) < 5
5 .wfoz ff(‘.) (
. 2x) (x cos sx ) dx
l{{xf(XJ}cossrdx_ F { £
(b) W X I)}
Ehave
Fle=) =T
( )“ge mé‘-‘fdt;—_f:u__l
a4 52 =asin sx — s cos sx|
:;{‘}T 0
§
and
F,(e"“ =T
) g‘f“‘COssxa’x:_e__f_
. al g2 ACosSX+ Ssin.\‘lg
a4 g2 N
WAl L (o)
ds '"‘)
- d
2l a
dS(Q2+SﬁJ __gﬂ_S__
(a: +57 )2
'(xeﬂu):—_ d
ds {F‘ (e_m )}
:E—-( § 2
]EXEIIHDIG.I2 If : 02+52}:(a +Y2)—S(2*) g5
the g, - (alﬂj)z (@)
o (a +s')
®

209
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Exa
mple.13  Solve theintegral equ ation.
= sin® ¢

i 1-a, 0@ <1 .
qu(B)cosaBdG{ 0 o>l ,chceevaluate f= dt
So .
In. We have If(@)cosaﬁ 40=F.(2)
0
1-a, 0@ <1 '
E(a):{ 0, a)l (1)
By the inversion formula, We have
2! .
a e cosafda Inte ating by part
f(e)-_—%jﬁ‘c(a)cosagda - a) [Tntegrating by parts]
0
; ik 2(1—(:059)
il sinaf ::dg_‘_cosa _ n
st T
T 0
ﬂZ("C"Sg) osa0do (ii)
N = cmaedB:I’”TF””c
ow E(a)~1f(9) )
0
-, From (1) and (i) we hav
1-@ 05&51
Zml:ﬁczfﬁcosaf?dgj 0, a>l
2 [
;o
2]: l—‘COSgdB:l
Now lettering o = %’ we g o
= th ¢ d6 =2dt
T |
[T
= _Sdigg/tzﬂ'v'lz
[77
1 tation w that
' _ T Sﬁﬂa
Using the Fcn;u‘iCI'lntegralr P e cOSﬂ’xdam% * (\20)
) (if) (I] s
“ ® + T - (x‘?
(1 M(i(ﬂ”’
)‘Il 1+ 0’ 2
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v Hind¢ : ‘ 0 .
; he Fourier trans oy o« >a fre=1/) o (x—u)du=h(")
AR e ey 2
the Fourjer transformg Sree Convolution theorem for Fourier transform The Fourier tranform of the convolution
5. Giv ( of f(x) == s of f(x) and g(x)is the produt of their Four ier transforms i.¢.
tn F e"‘:) 0 for i
(i) ¢ find the Foyy F[f(x)"8 (x)]= F[f("')]"c[g("')]
g ler transfo
. rmof "
6. FmdtheF (H) e‘*‘(r-hl we havC F{/(‘)*g(\)}zr{ij(Il)g(f"'ll)dh’}
ourier cogi
sine trangf; i ;
" Findgpep OIS Of f(x) = g - i{] f(u)g(-\"")ff"}‘f‘“"-“=L-"(”)\.ﬁg""“)'e"‘d"}d"
()Urjertr . i ol
ansf . i .
orms of f(.r) i {1, O5xcs [Changing the order of mtegratlon]
05 - (&
. : X2 g ~ j f(u){i ol ul_g(‘,‘._”)d(x—u)}e du
Ind the F = e’
Ourier gi
ne tr PP
#' ansform Of‘—-—;]—___ = I e f(u){j mg(!)df}du where ¥~
o )
| ® rle = x)F
'l‘ e iy = e wydu e N (x)ae F 8 ()= Fir ) ()
| d Zh ) i
“Quation | 1 3.7 FOR FoURIERTRANSFROMS
o/ (¥)cos qx g PARSEVAL'S THEV .
3 3 ANg X =g® - (1) are F(s) d G(s) respectlvely, then
| VareT WERS 5 Ifthe fourier tran®® of /(x) ¥ 7
4 = _Trx g(x)dl
{ 6 —‘Eel“i 4, S(sings_ ) 1 F(S)G(S)dv— A 7 ()
2 & aCOSSa) -‘ZJ 2T
l‘* 5 1 “35% s }f."j 1 of v L
18 sing ) e ’i]ig (i) LILF ()] & iV (N
5.6(1) g 1l P
CON s 2 2
VOLUT n A Wh _r comple® coty gatl®
The ION 8 5(_; (l - e-ns ) 9v s (l cre ba[’ ln'lphes the d
CoMojy } L] E(S)fmds} ‘
UIIOH . & — i " x){/[r\
Oftwq fungg (i) ¥4 (x)8 ()7 Lf (*N2r T yersion formula of Fourier transform)
lon s 47 [changmg |
fin [ Changin the order Of integration]
(/OO,OO) _ T f(\) as‘d_‘—}ds
| G(s){ Al

(¥) a
nd
g(x) over the interval
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s)ds by definition of Fourier transform.

(i) Taking g(x)= S(x), we get

27 LPOF )= 17 () o 2 LI = (s
Example.l4 Using Parseva)’s Theorem s Prove that
i)—% __ _  « A
P £ o =
”(G"-'rf‘)(b'ﬁ-[") 2(«'3)(&4—[)) (H) n(, _+_]) dr= 4
7 singy T l-e
(iif) imm:?T
S .
oln. (i) ¢t f(x)=e= and g(\):e““, Then £ =@ _ (s)= :
a’45t’ b +35
Now yg; ’
SIng Parageyq g theorem fo Fourier cogine transfroms ,i.e
2
;iF(-f)Gf(des:;f(r)g(a)fa
2
WE have ;{ .’ﬂb d\ “J —[:H.‘))rd
(CI ‘f‘SM)(bz ) 0
Or g_‘if_’j dS e‘(aﬂ:]‘— r 1
T Omg’_z -
(575 ") Han)|, Tan
’Thu f dt pe
0 \a,t
(a2+; )(b +77) m
(1) Let S(x)=_x
?;—I » S0 that Fff( )}:f_e_
, 2
Now using Preseyy):g

)|2 dx
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Hence | (7 + 1)

a

=—.0, S)=ff—
) {1.0<.\'< then F.($)= "7 3 5
s(X)= x>a
(i) Lot f(x)=¢= and 570 R
g» asind o f e ldy= a
ye have i.{ m i
. ve, V té
Now using (1) abo
= ginat d{,l—(l'f )
s § )
us !(a ExERCISES 2 |
i ‘___-a'(.l'):e—x
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oluation theo™ emfo . twd‘ﬁ%
nv t
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/—"
| | and F(s
Mk {0,‘x|>a w that
sho
Using Paraseval s theorem /) dt=TH5
sing Par ) —
i | 0 ) g
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. i how
(i) {1 (2 +1) 4 RN l| and hence s
N 1\ >1
f®)=o
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av . e
¢ F{f (1)} = e £(t)a . Provided the first n—1 derivatives vanishas x — 1%
- ! = I e".0.d +j st
- ) e’ e
0 g l n i n [Ls 9 A
ET s For P/ (a)]= /(7
0 f([?:j‘e‘ﬂg(r)a? o
0 L =LI ’{t |
Henc 1817) — ®
5.9 © the Fourier trangopp, of /( Where p=x-is =]e’“ g —ise” [ +(is) €S T +(-is)’ I feds
~ FOUR] ) [D
ERT efined by (i)]
s RANSFORM S OFTHE v (1)] is the Laplace transform ofé’(’)' ; by the general rule Ofimegration by parts, whence follows.
Ourig DE 10
MBS orm of the fineq RIVATIVES OF A FUNCTION INVERSE LAPLACE TRANSFORMS BY METHOD OF RESIDUES
10n u(x 1) i
S —_ @©
F . given b Al ut
[H(x’t)]z [ uets gy d Let the Laplace transfor™® of f(x) be 7(s) so that /) _Lf(’)e dt
Thenth B s Z o . _
¢ Fourjer ¢, ansform of Multiply both sies by ¢ and integrat® .t s within the lmits a=ir and q+ir - Then
F o Culox’, e, o o 2 il
Ox’ ] j Qi_ | e“‘f(s)ds:f € £/( e
x € ;rdl S _a_l{ . a-ir a-ir
e o +(' 2 . . i ]. e_,_“,TI:e-drf(!)]ei"drd”
on applyin » I‘S) [ ue™dx, oy ) _(a-i)! ({;(-fdrl)=’e e
gthe gep = = fe I it
el‘a] r
+eo , then e Ofmtegraﬁ(m b ( {e“" f(t)for 120
Y {0 8)= :
parts. It and 2_1: tend to zero as Xteﬁds ™ —Ir K (!)L’""df du where 0 for <0
F[azll] ’ - t
___:_ = B i . > 00 We ge
Similar] 3 [4] Proceeding {jmits @S 7 oy e
T BT R X or
ymtheCaseofF (1) avie w7 (s)d¥ o g (¥ Y i ‘o
rlel's j f § -
0% €and ¢q a-i®
Fl = sine tr
[ﬁsz s(u) ~r anforms , we have | 7[_(7(5)015 (_1-70)
| Hence 1 (x)=75, I, " ¢ ) [t provides @ direct means for
2 27l a invefswn I-mula. P
and E [ 0 u] ( Ou (2) Which i call ed the¢€ }6}; i fa giveﬂ fIJﬂCtlon.
ox’ ox | ~8F [« obtai o rseLa face 1A% . 2 line L arallel imaginary axis in the
In genera] o leld] aining the Inve LB performed 3}0111;65 cof 7(5): et us take a countor C
t ) i : r
al, the Fourier trang, 3) The mtegrat s such that all dsinhiléjn’li"ﬁrde (¢ MNL). Then from (2)
fo the Complex plane 5= (ine LM an
Nth derjyat; Which i se Ofthe — (V¥
Vative aan by ch is compO _ 1 w f (s )d.‘v
of f(x) 18 give o ;/l,.je"f(s)':z/ff/f'fj'e
. f(s) 5= i ¢ " (undefceﬁ ain )- Therefore

[jfo (~is)" r[f 9]

The integral over
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F(4)= Lt = [T (s)ax

r—aw 27-” e

= sum of'the residuces of ¢“ f(s) at the poles of f(s)

i 1
Example 15 Evalualt £ {"_*-—(S_l)(sz P )} bymethod of residuces.

| Soln. Since

1 |1 .
]l o

, therefore

- 1 =
e ¢
[(5_1)@ +1)J e R”Lsﬁl)(‘gz HJ atthe poles s =1,

Now (Res), <1, (\(J‘“J :
I

(Res)=pa| Goner 1,

Changing it - we get

(Res) » =q_1_._eli_
S
’ 1 x
Pl | [ ..
[(s—u(fﬂ)} G NI

| EXERcCisg 53 :
Using the metho ofresiduces, eVvluat

® the inyepg, Laplace transform

3 1

’ (sz +1)2
ANSWERs 5

2. 1/e*’(x—1)+cosx

3.(

Sint-teosr)/a 4,

NS
MULTIPLE CHOICE QUESTIO

is
Fourier cosine transform / (1)
i osstdt
@] /()

(c) [ f(t)sinstdt

18,0+
Fourier cosine transform of 1/
(@ 3
©% g
£1(x)
If Fourier cosine tfansformo
4 g*ds
() f(x)= ‘21;_{” £i)
-ist g
1 @
© f(x)='2“;.LF(y)
Flan f(x)] =
(a) J ¢ (1)af
(c) if(r)gfszdt F{f(x,a)}
then

s F(s), tenthe

(b) 1/ ()eoste

@ [ O

2

)5

3

s
@5 |
inversion formul is,...

1 % p(s)e ™ds
o /5 L)

1% S)e”""ds
(d)f(x)ﬂr_ln (

w1707

@ 1110
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Fourier sine integral fepresentation of a function 7 (x) is given by,...

(a) ;_{: Sin)uxjji f(t)sinz d2 (b) ;rz_c{ sin A.VI S (t)sinAtded2

© ! Stnide | f(t)Sinltdtd’l (d) E} Cosi,r]- f(t)sinAtdtdA
- - To 0

=
@3 (6) -
I
(c) P (d) a
E[ (ax)] “Fi(s/a) thenk =
@)~ :
2 (b) 5~
(C)é
d) 4
B
OUTIE transformg o p *°0nd derivaiye of u(x,t)is,......
@) (7 (u)) N
(®) = (P ()
©) s (F (u))

() (P ()
Iff() {1 0<x<7;
0, x>n ,they nFq Ourier gjpe - mtegraloff (x) is

(a) = ; Sln(’“)d’”sm

(4 )d:

" At
: (b) ETSin(,lﬂd,?,iSln(ﬁf)
© i <]
© S‘“(’“Jd&{sinuz)d; )df

T . !
(d) i"f sin(&,r)d/1£51“(}“
T s
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terval (0.7) 18,....
0. Iffourier transformof f'() in the i

iﬁ £ (x).cos ﬂ}h a )
(a) = f(x)-c (( ! ]dr o _,’[iif(x).COS[if_)dx
(c) J f(x).cos

x) then the Fourier transformof f (ax) is

(x

fr
11, If F(2) is the Fourier transform
A
@~ (5 A2
1 A
(c) —F [;J

[2 Es 2 _ ®© S)l: d,\- (b) none
: ) de =] |F(
ey el (d) false
(a) True
g 0 __ jinear operaio™ (b) none
2 Fourier transform1s 2 (d) false
(@) True
(c) 0
b) True
4 “‘—’F e 16
Lo ( (x)] dx (d) not .
: rtransformls
(a) false £ (x)cosax A fourie
(<) then /1 L r(a—s)
(© 0 n. (s) ! e S+H)+~f("‘
ls, or transfor? (b) 3 /( ¢

If () has the four®®

None
(a) f(S-a)+f(5+a) 2

s+a)
(c) %f(s_a)—l'é'f( i
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16.

19.

20,

21,

f(x) then derivative of f(x) is,....

17.

, 18,

: m
The fourier transform of /(%) , the derivative of (x),and £(s) is fourier transfo

@ .S'f(S) (b) f(s) 22,
© -is(s W iss6)
If /(s) isthe fourier transformof /(x) thep *j; f (EJ is the fourier transform Of
a

@) Fla ;

) (b) F(ar) 3,
(©) F(s) (d) F(a'x)
The sine transforms of 267 4 5072 i,

2 10

2 5
(b) SLE 125 ¢ +4:'

1

®) o [1+() e ]

| a” + S2
The finite sine transform o

[sinax] if , #s and a,s are integers is, ..

(a) fz-

(b) Z
(€)1 2

(d)o
The finite Cosine transform of Z ~X+ ¥

3 27 5.,
(a) “lz
Y

(b)+

24,
(d) None

(@ = [1-(-1y "] 4.

(d) s
1
(©) =
Zis
The ﬁmte Sine tranSfOIm Of[ ff] .
® V5
2 1
(-7
(a) (d) None
© 0" 5
c) (- 2
S _ whel'e a;ﬁO
_ F(4)then F [/ (o))
If F[f(x)]= - |_1_| FIA]
1r a)
(a) |a| [ (d) None

1 A
© " H
if F £ (x)]=F(*)

(a) e*F(2)

then FLS el (b) €“F (%)

@ “F ()

(c) e F(4)

x)=
. then f(

. ro<x<
( 1)"" 12 K lslﬂtege

& n=Le

K 22 (-1 ﬂ .nfjfﬁ
’ R P ) |
If £;(n)=—"7¢ ® 7L !
( l)r 1 ﬂﬁ/‘
2k = \7L_sinT
@ T2 (d) None
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@ 1+22
(b) —2
. F:%? 1+ 247
i @
. IEF[f(ar)]=Lg(2 -
] l‘-"‘, F[;], a#0 then F[e'?‘?] =
J 2
(@) 4+ 22
4
| © 5y o
@ 575
ANSWER
KEY (v
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? » : TIONS)
(b)
- 03. (¢)
| 13.(a) 09. (a) 0 oo
i e | 0.® g
| 19.(c) 3 (c) “ e
20.(d) @
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26.(b) 20
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